
JDJ Feature: How to Store & Share Java Objects Dr. Andrew Wade
Using flat files, DBMS or ODBMS depending on your needs 8

Adding a Middle Tier to Your Java Code Using Sean Rhody
Jaguar CTS Meeting the needs of an n-tiered architecture 16

Becoming Friends with GridBagLayout John Tabbone
A layout manager that is great for positioning components 24

JDJ Feature: Building a Chat Applet part 2 Joseph DiBella
Creating an applet object as a container for a panel object 30

JDJ Feature: Browsing the JDBC API Graham Harrison
Designing and building a simple, useful database browser 44

Implementing Callback-Style Support for AWT Daniel Dee
Reading and writing object data made easy 54

The Cosmic Cup: Java for the Enterprise Ajit Sagar
Technologies that will determine Java’s role in computing 60

Tips for Developing Pure Java Applications Bob Adams
Substantial benefits in producing and verifying fully compliant code 74

SYS-CON
PUBLICATIONS

Under the Sun
JavaHelp™ Software
by Nancy Lee pg.38

Product Reviews
Visual Café for
Java Database

by Dana Crenshaw pg.68
...

InstallAnywhere
by Ed Zebrowski pg.40

...
CocoBase Enterprise
by Ed Zebrowski pg.36

...
OrbixWeb 3.0

by Khanderao Kand pg.70

Visual Café
The Data Series: JDBC
by Alan Williamson pg.64

The Grind
Hit the Road, Joe

by Joe S. Valley pg.82

Java News
pg.78

The Component
Choice for e-business

by David Gee pg.7

Tips & Techniques
Singletons, N-tons &
Static-only Classes
by Brian Maso pg.66

Volume:3 Issue:4JavaDevelopersJournal.com

HOW TO STORE JAVA OBJECTS
TM

U.S. $4.95 (Canada $6.95)

2 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Full Page Ad

3VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Full Page Ad

4 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Full Page Ad

5VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

EDITORIAL ADVISORY BOARD
Ted Coombs, Bill Dunlap, Allan Hess,

Arthur van Hoff, Brian Maso, Miko Matsumura,
Kim Polese, Richard Soley, David Spenhoff

Art Director: Jim Morgan
Executive Editor: Scott Davison
Managing Editor: Gail S. Schultz

Editorial Assistant: Christy Wrightington
Copy Editor: Alix Lowenthal

Technical Editor: Bahadir Karuv
Visual J++ Editor: Ed Zebrowski

Visual Café Pro Editor: Alan Williamson
Product Review Editor: Jim Mathis

Games & Graphics Editor: Eric Ries
Tips & Techniques Editor: Brian Maso

Java Security Editor: Jay Heiser

WRITERS IN THIS ISSUE
Bob Adams, Daniel Dee, Joseph DiBella, David Gee,
Nancy Lee, Brian Maso, Sean Rhody, John Tabbone,

Joe S. Valley, Andrew Wade, Alan Williamson

SUBSCRIPTIONS
For subscriptions and requests for bulk orders,

please send your letters to Subscription Department

Subscription Hotline: 800 513-7111
Cover Price: $4.99/issue.

Domestic: $49/yr. (12 issues) Canada/Mexico: $69/yr.
Overseas: Basic subscription price plus air-mail postage

(U.S. Banks or Money Orders). Back Issues: $12 each

Publisher, President and CEO: Fuat A. Kircaali
Vice President, Production: Jim Morgan
Vice President, Marketing: Carmen Gonzalez

Advertising Manager: Claudia Jung
Advertising Sales: Diane Baird

Paula Horowitz
Advertising Assistant: Erin O’Gorman

Accounting: Ignacio Arellano
Senior Designer: Robin Groves

Webmaster: Robert Diamond
Senior Web Designer: Corey Low

Customer Service: Rae Miranda
Sian O’Gorman
Mitchell Low

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-1900 Fax: 914 735-3922

Subscribe@SYS-CON.com
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is

published monthly (12 times a year) for $49.00 by SYS-CON
Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Application to mail at Periodicals Postage rates is pending at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1997 by SYS-CON Publications, Inc. All rights reserved. No part of this
publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy or any information storage and retrieval system,

without written permission. For promotional reprints, contact reprint coordinator.
SYS-CON Publications, Inc. reserves the right to revise, republish and authorize its

readers to use the articles submitted for publication.

ISSN # 1087-6944

DISTRIBUTED in USA by

International Periodical Distributors
674 Via De La Valle, Suite 204, Solana Beach, CA92075 619 481-5928

BPA Membership Applied For August, 1996
Java and Java-based marks are trademarks or registered trademarks of

Sun Microsystems, Inc. in the United States and other countries.
SYS-CON Publications, Inc. is independent of Sun Microsystems, Inc.

SYS-CON
PUBLICATIONS

Visual Basic is arguably the most successful
programming language in the history of pro-
gramming languages. The number of VB compo-
nents and applications out there is staggering,
and the number of VB programmers is even
more so. However, there is a not so silent con-
tender for the World’s Most Popular Language.
It’s OO, it’s multithreaded, it’s Internet-ready. It’s
an expressive and flexible language capable of
industrial-strength server-side computing, and,
for the C++ crowd, here’s the real rub: it’s idiot-
proof. It’s Java. Java not only promises enter-
prise solution-capable software, it promises to
do so with VB-style ease of use and with an unri-
valed adoption rate. Therein lies the central
issue: The combination of ease of use, power
and popularity makes Java an important lan-
guage for the software engineering community.

Consider distributed computing. There has
been an evolution of technologies including
socket programming, RPC and distributed
objects. For a while, however, we had distrib-
uted objects with a little baggage – you had to
muck with your application logic and you had to
generate stub and skeleton code. This model is
rapidly being eclipsed in favor of easier and
more seamless programming models. Clients of
remote objects often need to know that the
server object is remote to be prepared to deal
with the inevitable gotchas of network comput-
ing. However, there is no justification for cou-
pling the server object to the distribution layer
– it need not know how it’s being accessed.
Therefore, some distributed computing plat-
forms are removing this burden from the pro-
grammer and allowing any class to be remote-
enabled without modification. In fact, even the
tedious and error-prone proxy class generation
step now happens on demand at runtime. It no
longer requires intervention from the program-
mer. What does this mean? Distributed comput-
ing in Java is approaching the theoretical limits
of ease of use!

The beauty of this is that it’s just the begin-
ning. Distributed computing is just one tool in a
software engineer’s bag of tricks. The entire
gamut of software engineering is subject to this
level of ease of use. Java’s thread model has
almost made platform-independent, multi-
threaded application development a non-issue.
Garbage collection almost makes memory man-
agement a non-issue. Dynamic class loading
greatly facilitates mobile agent platforms and
applications. JavaBeans™ is quickly making GUI
development a matter of connecting the dots.
EJB promises to work similar magic for server-
side transactional programming and persis-
tence integration. JECF is on the way to solving
the problem of developing electronic commerce
software. The list goes on and on. Many of yes-

terday’s programming nightmares are evaporat-
ing before our very eyes. As layer upon layer is
added, we’ll find more software development
issues being taken care of automatically. Expect
it and demand it.

Microsoft Windows NT 5.0 is supposedly
comprised of no less than 25 million lines of
code. That is significant by any standard. Now,
imagine if the authors had to write this opus,
not in C and C++, but in binary. Imagine the com-
plexity of such a task. The number and quality
of minds needed would be tremendous. You
could make a strong case that human sociologi-
cal development has not yet advanced to the
stage that such a group project is possible. It
would seem that an accomplishment like NT 5.0
is simply not feasible (perhaps not even possi-
ble) without the higher levels of abstraction
provided by C, C++, COM and the rest. My own
experience in building distributed computing
technology provides at least a modicum of evi-
dence that Java, with its flexibility, ease of use
and power, has the potential to go even further.
Java makes it possible to achieve instant dis-
tributed computing, and there is every indica-
tion that there is much more to come.

Let’s step back and consider the big picture.
Why do we even care that software is easy to
build? Does it matter that Java technologies are
easy to use? Definitely, because by making it
easier for us to build software, we are improving
our ability to solve problems. The human race
advances by the number of operations it can
perform without thinking about them. When
Alfred North Whitehead said this, he probably
wasn’t thinking about software engineering
abstractions, but his words couldn’t be more
applicable. Let’s face it, software runs the world.
Many improvements in the nature of medicine,
government, quality of life, science and econo-
my can be directly linked to improvements in
software. By making it easier to build software,
we’re making it easier to advance as a people.

The last thing the Java community needs is
more hype. It is certainly not my point to com-
pound the hype problem. My contention is that
Java and the emerging frameworks do, or at
least can, facilitate software engineering better
than the commercially viable alternatives on
the market. I offer the ease and growing adop-
tion of distributed computing in Java as a suc-
cess story. Java isn’t the solution for world
hunger. It does, however, offer a compelling
combination of popularity, ease of use and
power. Software engineering is getting easier,
and the Java platform is an important reason
why.

About the Author
Rhett Guthrie is a Senior Technologist at Object-

Easy Does It

GUEST EDITORIAL

Rhett Guthrie

6 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Full Page Ad

7VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

PHONE, ADDRESS
& WEB DIRECTORY

CALL FOR SUBSCRIPTIONS

1800 513-7111
International Subscriptions

& Customer Service Inquiries
914 735-1900

or by fax: 914 735-3922

E-Mail: Subscribe@SYS-CON.com
http://www.SYS-CON.com

MAIL All Subscription Orders or
Customer Service Inquiries to

SYS-CON Publications, Inc.
39 E. Central Ave.

Pearl River, NY 10965 – USA

EDITORIAL OFFICES
Phone: 914 735-1900

Fax: 914 735-3922

ADVERTISING & SALES OFFICE
Phone: 914 735-0300

Fax: 914 735-7302

CUSTOMER SERVICE
Phone: 914 735-1900

Fax: 914 735-3922

DESIGN & PRODUCTION
Phone: 914 735-7300

Fax: 914 735-6547

DISTRIBUTED in the USA by
International Periodical Distributors

674 Via De La Valle, Suite: 204
Solana Beach, CA 92075

Phone: 619 481-5928

Worldwide Distribution by
Curtis Circulation Company

739 River Road,
New Milford NJ 07646-3048

Phone: 201 634-7400

SYS-CON
PUBLICATIONS

����
����
����

QQQQ
QQQQ
QQQQ

¢¢¢¢
¢¢¢¢
¢¢¢¢

DEVELOPER’S

JOURNAL

Buyer’s GuideBuyer’s Guide
P d & S i

Java Developer’s Journal
http://www.JavaDevelopersJournal.com

Web-Pro Developer’s Supplement

National Java Learning Center, Inc.

JDJ Buyer’s Guide
JavaBuyersGuide.com

VRML Developer’s Journal
VRMLJournal.com

Have you heard the words ‘build virtual
teams, extend the corporation, manage the sup-
ply chain’? Are you convinced that e-business,
enterprise applications deployed over the Web,
Internet plus intranet plus extranet are the way
to go? Chances are you’ve thought about this
and your answer is yes. But what does that mean
to you, right now, as we’re one Web year into
1998?

As you and your development team move
from pilot projects to implementation of enter-
prise-wide systems across the Internet, intranet
and extranet, you’ll need to consider and bal-
ance several critical elements. The right combi-
nation of component architecture, client/server
tools, Internet practices and existing legacy sys-
tems is crucial. In terms of decisions to be made
this year, I would like to address choosing the
right component model as one of the most
important issues you’ll contend with. Accord-
ing to a recent report by Forrester Research,
Inc., of companies interviewed, 44 percent have
no object strategy now, but by the year 2000
only 4 percent foresee having no object strate-
gy in place.

Components, by definition, are self-contained
program modules that can interact with each
other. The software community is creating com-
ponents to speed application development and
to build up a platform-independent base of
reusable code. By incorporating a well-conceived
component model, you can anticipate, drive and
respond to changing market conditions, optimize
reuse and create custom applications more
quickly.

Since you’re holding this magazine in your
hands, you’ve already decided that Java is an
important element of the e-business equation,
whether you’re beginning to experiment with
Java or are an advanced Java programmer. In
Java, almost everything is an object or compo-
nent. The JavaBeans™ spec was written by Java-
Soft in conjunction with numerous industry lead-
ers, including IBM. JavaBeans is fast emerging as
the portable, platform-neutral component model
written in Java.

The JavaBeans component architecture is
the ideal choice for developing network-aware
applications that allow you to move within the
enterprise or across the Internet. Unlike days
past, you can’t assume central control over
deployment. If you anticipate deploying systems
over a heterogeneous environment, you’ll want
new systems to connect and integrate with any
other hardware or software that might be
encountered on the Internet, intranet or
extranet. The JavaBeans component model
places no restrictions on where applications can

be deployed. And not coincidentally, JavaBeans
connect into any other component model via
bridges, including COM/DCOM. The opposite is
not the case. The full COM environment – partic-
ularly Microsoft Transaction Server – will be
available only on NT. Java and the JavaBeans
architecture is the only model to consider with
these goals in mind.

In 1997, we saw a lot of people building inter-
esting client-side applications, just as before that
we saw a plethora of spinning Java applets on
the Web. The e-business equation rests on the
belief that Java is not just a client-side model. Sig-
nificant server-side Java initiatives are well
under way, including IBM’s massive San Francis-
co project. San Francisco has put over 300,000
lines of code in the hands of developers for cre-
ating run-your-business server applications.
Over 250 companies have licensed the code so
far, and the first of these applications will begin
hitting the market later this year.

This server-side emphasis extends to the
component model as well. The Enterprise Java-
Beans spec is a component architecture for
reusable server-side components to build busi-
ness applications. IBM was a major contributor
to this specification as well. Very soon we will
begin to see support for scalable transactional
application server components.

Other people in your organization who man-
age the desktops may be inclined to choose
Microsoft’s COM/DCOM model for your busi-
ness. While COM/DCOM delivers decided bene-
fits to the client, the real business benefit from
component-based client/server lies in the busi-
ness logic and applications that reside on the
server. With leading visual development tools,
Java’s security model and built-in scalability,
Enterprise JavaBeans is clearly the superior
model.

Become the JavaBeans ‘component propo-
nent’ within your company. You’re going to be
called on to make the quick changes and connec-
tions to the applications that run your e-business,
so don’t let the decision be made without you.
Which component platform your organization
adopts now will determine how and where you’ll
expand your business in the years ahead.

About the Author
As Program Director, alphaWorks & Java Marketing in
IBM's Software Solutions, David Gee’s role includes
developing the company's Java marketing strategy,
forging strategic business alliances and maintaining
partner relationships with key industry influencers. You
can learn more about IBM’s Java initiatives at
www.ibm.com/java and explore IBM's online research
laboratory at www.alphaWorks.ibm.com.

The Component
Choice for e-business

FROM THE INDUSTRY

David Gee

8 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal

Need to store your Java objects? Files can do this, with a little bit of program-
ming to flatten them. Need to share them with others, guarantee integrity? Tra-
ditional DBMSs can do this, if you translate your Java objects to SQL. Need
24x7, scalability, distribution over WANs, flexibility for schema changes?
ODBMSs can do this, and they can do it easily, by automatically making your
Java objects persistent. We’ll present the basics of object databas-
es and contrast them with relational and object-relational;
explain how to determine if your application is a good fit for
ODBMSs; how to deal with legacy issues and how to use
ODBMSs with Java and the Web. Examples, chosen from
over 150,000 users in production, are included.

JDJ FEATURE

The path you choose
depends on your needs

by Dr. Andrew E. Wade

How to
Store &

Share
Your Java
Objects

Where to Store Shared Information
Many software systems and applications

deal with information which must outlive
the process. There are many ways to save
such persistent information. Broadly, these
consist of file systems, traditional database
management systems (DBMSs) and object
DBMSs (ODBMSs).

File systems support the basic need of
persistence. Information is still there after
the process terminates and this information
can be accessed later. Beyond this, files offer
little and they do require work. The pro-
grammer must somehow flatten his Java
objects into streams of primitive data, and
then manually write those streams to files.
The reverse is necessary to access the infor-
mation later. Any changes in the object types
will likely require changes in this flattening
code, in the file format and perhaps in appli-
cations that use it. Any concurrent access
control is up to the application program-
mers or conflicts will result. Files are useful
when you have a small amount of informa-
tion, which is unlikely to change much,
accessed by only a single user (at a time),
with no need for reliability features such as
recovery or usability features such as rela-
tionships, distribution and versioning.

The next choice for persistence is to use

a traditional DBMS,
such as a relational one

(RDBMS). These systems
have been very successful in

business applications which
use very simple, primitive, fixed-

length data types, organized in tables. They
add support for concurrency so multiple
users can access the same information
without destroying each other’s work. They
also add recovery, so the stored informa-
tion can be restored to a known, good state
even after power outage or other cata-
strophic failures. They add powerful
searching (or query) capabilities. Unfortu-
nately, RDBMSs were designed for a differ-
ent generation of software technology in
which users dealt with raw (unencapsulat-
ed) data, third generation programming
languages (COBOL, FORTRAN, C) and a
data-specific language (SQL), with the pro-
grammer manually translating back and
forth between the two. With objects, this
means the programmer must translate his
objects to flat, primitive types and sort
them by tables. Then, when restoring the
objects from the RDBMS, the programmer
must reassemble the objects from various
tables, using slow inter-table connections
called joins. This mapping code results in
three problems:
• Programmer Time: Instead of writing

mapping code, programmers could be
developing (and maintaining) more appli-
cations. It is not uncommon to see a third
of an object application dedicated to this
mapping code.
• Integrity: Because the RDBMS deals
only with the low-level primitives, all

higher-level application object sup-
port, including methods that

maintain their

semantics
and integrity,

are unknown to
the RDBMS. Instead, appli-

cations must enforce such
integrity constraints by translat-

ing the data into objects and using
the object methods. If different appli-

cations do this differently they will be
out of synch, causing integrity violations.
End user graphical tools (forms, reports,
query tools) go directly to this primitive
level and thereby bypass any of the object
constraints, losing integrity.
• Performance: At runtime, the need to

disassemble and reassemble objects
takes substantial time, slowing the appli-
cation.

ODBMSs include the capabilities of tra-
ditional databases, but add several new
ones. First, they support objects. The very
same objects you define and create in Java
are transparently managed by the ODBMS,
including saving them on disk, recovering
from failures and coordinating concurrent
access. This means there is no need for the
mapping code (described previously) with
all of its problems. It also means that all the
DBMS capabilities, including recovery, con-
currency, and query with object methods,
apply directly to objects rather than to the
primitive, disassembled pieces of objects.
Because all access to the ODBMS goes to
the objects themselves, they can automati-
cally enforce integrity. Even graphical
ODBC tools can be forced (using security
restrictions, by user and group) to go
through high-level object methods in order
to maintain integrity and most ODBMSs.

Where RDBMSs have mainframe-like
central-server architectures in which all
storage and processing occurs on a central-
ized machine, certain ODBMSs have been
developed with distributed architecture.
This allows objects to live on any computer
(accessible in the networked environment),
to execute anywhere and to be accessed
transparently by all users, with all opera-
tions working across this distributed single
logical view. In addition, objects make a nat-
ural unit for replication, and implementa-
tions now exist that keep replicas in synch
even across failures. The distributed ability
to support transparently adding servers is
a major part of scalability, and other capa-
bilities have been added, too, including
concurrency modes that support multiple
readers and up to one writer running simul-
taneously without blocking.

Also, ODBMSs bring new features. The
ability to define many-to-many relation-
ships allows the ODBMS to generate and

9VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journal

Traditional
File DBMS ODBMS

Persistence v v v

Recovery v v

Concurrency v v

Objects v

Integrity v

Distribution v

Scalability v

Relationships v

Versions v

Table 1: Comparison of file systems, traditional
relational databases and object databases

10 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

manage the code to maintain such relation-
ships, to dynamically add and remove ele-
ments and to maintain referential integrity,
all without the need for users to write code
or manually manage secondary data struc-
tures such as foreign keys. Moreover, tra-
versal of such relationships is direct, with-
out the need to search down tables and
compare keys as is done in the relational
join. By connecting networks of objects
with these relationships, users can con-
struct composite objects, which allow any
number of levels of depth, and also any
number of composites threading through a
single object. Objects also provide the nat-
ural unit for versioning, keeping track of the
history of the object’s state, or even allow-
ing simultaneous creation of multiple

branches. Finally, since these features are
in the DBMS, rather than layered over some
simple data-only store, the ODBMS can inte-
grate them together to properly handle
complex object’s models; e.g., recovery of
composites and relationships and the
behavior of relationships when one of the
objects versions, etc.

In brief, ODBMS brings the advantages
of files and traditional DBMSs, and also
adds support for objects and additional fea-
tures.

What about ORDBMS?
Faced with customer requests for object

support, the RDBMS vendors have come up
with an approach called object-relational or
ORDBMS. To understand this mixed

approach, we’ll look at the high-level archi-
tectural description shown in Table 2.

A DBMS architecture can be split into
the front end, which interfaces to the user,
and the back end, which stores and
retrieves the persistent information. Either
of these may be based on either relational
or object technology, providing the four
alternatives shown. The first, with relation-
al front and back ends, gives a typical
RDBMS, while the second does the same for
ODBMS. The third shows an object front
end layered over a relational back end
engine. This is the approach of the RDBMS
vendors, largely because they have a large
investment in their back ends and it’s very
hard to change them. Adding the object
front end does add value; e.g., it might
allow better integration with some object
tools and it might allow some new data
types. However, the back end is still rela-
tional, which means the objects are still
being disassembled into flat tables, or
BLOBs, whose internal structure is
unknown to the rest of the DBMS. Some
ORDBMSs are adding data “blades” or “car-
tridges” which are effectively pre-built class
libraries. Unfortunately, they miss the point
of objects by dealing only with data. Also,
they require kernel modifications, so they
are hard for typical users to build, or even
modify. In contrast, ODBMSs allow users to
freely build any classes of objects, with any
operations and relationships and to freely
extend others’ classes. All of these can be
used in exactly the same ways as any pre-
built classes.

For completeness, the last column of
Table 2 shows how a relational technology
front end (including query and ODBC) can
be layered on top of an object database
back end. This not only adds functionality,
including ad hoc query of objects and off-
the-shelf use of all the familiar tools, but
also plays a key role in legacy support, as
we’ll see below.

When to Use an ODBMS
If your information needs to include any

of the following, a DBMS is likely to help:
• Recovery
• Concurrency
• Integrity Management
• Scalability
• Security

An ODBMS may well be a better tool for
maintaining your persistent information if
any of the following three items apply to
your system:
Object Usage

If your application or system is designed
and built using objects, that in itself might
make an ODBMS a better choice. It means
the same Java objects are directly managed

SQL Interface

Leverage SQL
Investment

SQL

ObjectivityDB

SQL Interface

RDBMS

Figure 1: Legacy integration with SQL and ODBJC

R O O RFront
End

R O R OFront
End

Tech

Example

Fits

RDBMS

Oracle

Simple Data
OLTP

ODBMS

Objectivity/DB

Complex Info
Relationships
Distribution

ORDBMS

Illustra
UniSQL

Simple OO
Tools

ODBMS + RDBMS

Objectivity/SQL++
PowerBuilder,…

Complex +
Query & Tools

Table 2: DBMS architectures: ODB vs. RDB vs. ORDB

11VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Full Page Ad

12 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

by the ODBMS. There’s no need to translate
them to and from some other format
(tables, records, etc.). This makes it easier
to build and modify the system, faster to
execute, of higher integrity and more likely
that the system will come together correct-
ly because the same modeling abstractions
are used throughout.
Complex, Interconnected Information

While RDBMSs work well for flat, fixed-
length primitive data, sorted by type into
tables, many applications require more. In
fact, most applications never used tradi-
tional DBMSs, and newer applications are
using yet more complex information,
including variable-sized structures (e.g.,
time series data), nested structures,
images, audio, video and whatever some-
one might dream up tomorrow. All these are
modeled directly as objects, making them

easier and faster to use. Even more impor-
tant for some users are the relationships.
RDBMSs have no direct support for these,
requiring users to create secondary data
structures (foreign keys) and manage them
directly. Worse, the RDBMS uses a slow,
non-scaling, search-and-compare process
(join) to determine what is connected to
what at runtime. The direct ODBMS sup-
port is much easier, faster and includes
more capabilities. A common rule of thumb
is: If you have more than three or four joins,
it’s worth looking into an ODBMS.
Distributed Environment

Traditional, relational and even some
object DBMSs are built around mainframe-
like central-server architectures. For some
applications, this works well. For others
(more and more these days), the deploy-
ment environment consists of multiple
servers, workstations and PCs, often with
more computing power scattered around
the network and desktops than is contained
in the central computer. The users wish to
store objects anywhere, access them from
anywhere, execute them anywhere, includ-

ing multiple tiers. An ODBMS can do this
much better with a distributed architec-
ture, using objects as the natural unit for
distribution and object identity as the basis
for transparently locating objects. This can
work over networks of heterogeneous com-
puter hardware, operating systems, net-
works and compilers. Even separate lan-
guages (C, C++, Java, Smalltalk, SQL/ODBC)
can be used to simultaneously share,
access and modify objects, a key capability
for object technology because it enables re-
use.

Users
The earliest users of ODBMSs were

those who had no choice, because they
simply couldn’t use the traditional DBMSs,
yet they still had a significant need for per-
sistence of large amounts of information,

concurrency, scaling and recovery. These
were engineering applications such as
CAD/CAE, both mechanical and electronic,
and are still users. Scientific applications
also are major users. Examples here
include CERN, in Geneva, storing the
results of high-energy physics experiments
(pictured on pages 8 and 9). They’re build-
ing the world’s largest database, 100 PB (a
petabyte = 1,000 terabytes = 1,000,000 giga-
bytes). Similarly, the Sloan Digital Sky Sur-
vey (FermiLab, Johns Hopkins, etc.) is
building a 40TB database containing the
first digital survey of the sky, storing the
stars, galaxies, quasars, etc., as objects in
the ODBMS.

From there, the user base expanded into
Telecommunications, where network man-
agement and real-time call routing require
the performance, direct relationships, scal-
ability and flexibility of ODBMSs. Examples
here include Qualcomm (and their cus-
tomers Nortel, Sprint, etc.), creators of the
CDMA cellular standard, who build all their
base stations on an ODBMS. Other exam-
ples include Siemens’ Multiplexor, Inte-

com’s Voice/Video/Data PBX, COM21’s
cable TV-based very high-speed modems
(up to 1Mbps) and Motorola’s Iridium satel-
lite-based world-wide cellular system.

Manufacturing and process control are
another major user, with real-time support
for controlling distributed environments as
well as databases of historical information
for off-line analysis and query. Users in this
area include Fisher-Rosemount, manufac-
turing control systems widely used in the
petroleum and chemical and pharmaceuti-
cal industries; Landis & Gyr, environmental
control systems used to maintain the
world’s busiest airport, Chicago’s O’Hare;
the Transamerica Pyramid and hospital
suites, etc.; and KLA-Tencor, the market
leader in semiconductor manufacturing.

Financial services are just now becom-
ing users of ODBMSs, as exemplified by
Citibank’s currency trading system,
deployed across Europe and the USA.
Logistics systems such as BBN’s Target are
used in military and commercial environ-
ments, as are transportation systems. Oth-
ers include document management, library
management, healthcare systems, plus the
utilities industry where American Meter
has built a data collection application for
remote meter reading and demand-side
management.

The ODMG Java Interface
If you’ve looked at DBMSs before, you

may be surprised to see what it looks like to
use an ODBMS. Unlike traditional DBMSs,
the ODBMS approach is to integrate the
DBMS functionality directly into the host
language. For Java, this means you simply
define, create and access Java objects nor-
mally and the DBMS takes it from there. Of
course, there are places where you will
want to explicitly use the DBMS; for exam-
ple, to start and end transactions (for
recovery points and points where your
work becomes visible to others), to create
and access large collections, many-to-many
relationships, etc.

The Object Database Management
Group (ODMG), a consortium of vendors
and users of ODBMSs representing essen-
tially the entire vendor community, has
defined standard interfaces to ODBMSs.
You can read about their latest work at
http://www.odmg.org/ or in the book, “The
Object Database Standard, ODMG 2.0,” from
Morgan Kaufman. The Java binding works
with ODMG’s Object Definition Language
(ODL), and thereby OMG’s Interface Defini-
tion Language (IDL), as well as ODMG’s
Object Interchange Format (OIF) and
Object Query Language (OQL), which is
quite close to, but not exactly like, the SQL2
query (SELECT-FROM-WHERE).

The normal syntax is used within Java to

Evolution Toward Objects

Surrogate Object

Legacy Data

Figure 2: Surrogate objects integrate legacy systems

13VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Full Page Ad

14 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

define object types, instantiate objects and
access them. Persistence is via reachability,
which means that once an object is con-
nected to a persistent object (including
“root” objects), it becomes persistent. This
is a natural extension for dynamic, garbage-
collected languages in which unconnected
objects are considered garbage and (even-
tually) deleted. Objects connected to other
transient objects are retained transiently
(until the end of the process), while those
connected to persistent objects are
retained persistently (across processes,
until they become garbage). A brief exam-
ple is shown in Listing 1.

Legacy System Access
It is a rare designer who has no legacy

system to deal with. Luckily, ODBMSs pro-
vide a couple of very good ways to link new,
object systems to older, non-object legacy
systems. The two most common approach-
es are first, based on SQL, and second,
based on surrogate objects – both of which
can be used if desired.

Since some ODBMSs now fully support
SQL and ODBC, these well-known lan-
guages may be used to simultaneously
access both the objects in the ODBMS and
the tables in legacy RDBMSs. Programs
written in SQL can access all such systems,
as can the familiar graphical tools (Crystal
Reports, Microsoft Access and Visual
Basic, etc.), almost all of which support
ODBC (see Figure 1). The advantage of this
approach is that it leverages existing
investments in programs, tools and also in
personnel training. Experienced database
users can immediately access the new (as
well as old) databases, starting where
they’re already familiar, and over time
learn more and more about objects in
order to get more benefits.

For the object user, a preferable
approach would be to make the legacy sys-
tems accessible as objects. This is done by
creating surrogate objects, which stand for
information in legacy systems. For the

major RDBMSs, class libraries to do this
can be purchased; for these or other sys-
tems, the user can also write his own sur-
rogate methods to read and write legacy
information. The result is that these surro-
gates fit transparently into the distributed,
single logical view. When they’re accessed,
they go off to the legacy systems but,
except for performance considerations,
they look exactly like any other objects.
Although the mapping of tables to objects
can be done automatically in a straightfor-
ward way, it is usually best to reanalyze the
entire system, define the desired view of
objects and then bury in the surrogate’s
methods the translation to any historical
structures, so objects might be pieced out
of different tables or go through legacy
modules as needed to meet the applica-
tion’s and user’s functionality. The result is
that the new object users have full access
to the legacy systems, but the legacy sys-

tems themselves continue to work
unchanged. Evolution is now possible at
the user’s discretion and timetable: legacy
information can be moved into native
objects if and when desired, with no change
for object users though of course at that
point legacy systems will need to be
changed to use the native objects (see Fig-
ure 2).

Conclusion
The path you choose depends on your

needs. For batch storing/restoring of a
small number of objects, with little con-
cern over speed, flattened streams to flat
files work. For concurrency, recovery,
backup, etc., go to a DBMS. The most nat-
ural, easiest and most efficient DBMS
approach is ODBMS, which also can add
native Java binding (just code Java and the
ODBMS works underneath), performance,
scalability, reduced programming cost,
extra integrity, relationships, versioning,
composites, kernel-level support for
extensibility. Some ODBMSs can also add
24x7 support (online administration,
garbage collection, schema evolution,
etc.), fault tolerance, replication, transpar-
ent distribution, heterogeneity (simultane-
ous use of mixtures of different operating
systems, languages, applications and data-
bases).

Finally, unless you like the “bleeding
edge,” check for references that are suc-
cessful in production, using the features or
capabilities you need.

About the Author
Dr. Andrew E. Wade is the Founder and Vice Presi-
dent of Objectivity, Inc. He helped found both the
Object Management Gourp and the Object Data-
base Management Gorup and has co-authored and
contributed to several books and written many arti-
cles. Objectivity can be found at
www.objectivity.com. Drew can be reached at
drew.wade@objectivity.com

drew.wade@objectivity.com

Listing 1: Examples of Java use of ODBMS.
//a persistent class with a transient attribute
public class Person {
public String name;
transient Something currentSomething;
...}

// Opening a database
public static Database open(String name, int accessMode)
throws ODMGException;
public void close() throws ODMGException;

//standard java code applies for accessing objects

//example code using collections and OQL queries
SetOfObject mathematicians;

mathematicians = Students.query(
"exists s in this.takes: s.section_of.name = \"math\" ");

Bag mathematicians;
Bag assistedProfs;
Double x;
OQLQuery query;
mathematicians = Students.query(
"exists s in this.takes: s.sectionOf.name = \"math\" ");
query = new OQLQuery(
"select t.assists.taughtBy from t in TA where t.salary > $1 and t
in $2 ");
x = new Double(50000.0);
query.bind(x); query.bind(mathematicians);
assistedProfs = (Bag) query.execute();

“Unlike traditional

DBMSs, the

ODBMS approach

is to integrate

the DBMS

functionality

directly into the

host language.”

15VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Full pg

16 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

JDJ FEATURE

The saying goes, “Don’t put all your eggs in one basket.” In the pro-
gramming world, particularly in larger corporations, this is tantamount
to a doctrine of the faith. The client/server revolution introduced the
idea of database independence from application logic. The birth of the
Web and the desire to reuse business logic have also led to the develop-
ment of a third layer – known as the Middle Tier.

by Sean Rhody

Making the power of Open Server usable for the
component builder, regardless of language

17VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

18 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Two Tier vs N-Tier
Client/server applications, and even

Java applications that call a database

directly, represent the original, two-tiered
application architecture. This architecture
fits many needs, but often there is a penal-

ty – the need to redevelop or copy code
from one application to another as it is
developed. More importantly, although
Java is certainly a significant language for
development, it’s a recently developed
one, and much of the logic that we need to
use is written in other languages. Distrib-
uted applications, be they Web applets or
standalone applications, also have a need
to centralize logic, both to minimize the
maintenance of the client, and to keep
download time and response times reason-
able.

Most of these issues have existed for
years now, and the concept of externalizing
and centralizing business logic from appli-
cation logic developed into what is usually
called a three-tiered or n-tiered architec-
ture. CICS was arguably one of the first
middle-tier solutions developed. Tuxedo
from BEA has been available for many
years as well. The concept is simple –
remove common business logic from appli-
cation code and place it in a central repos-
itory, where any application might call it.
And one of the first things this middle-tier
became charged with was handling trans-
action management. A transaction is a set
of one or more database statements that
must be treated as a unit of work. Simpler
applications have no real need of transac-
tion management, but applications that
access multiple databases on different
machines, perhaps in different locations,
have a strong need for transaction man-
agement. This provides answers to the
problem of two-phased commit, and of
grouping transaction logic.

Middle Tier Servers
Over the years, a number of solutions

have been tried, some more successful
than others. In a mainframe world, CICS
provides a certain amount of this function-
ality. In the client/server world, Tuxedo
and other TP Monitors allow this type of
development to occur. Unfortunately, the
models that these systems present differ
greatly from how we would like to view the
world as Java programmers. Ideally, we’d
like to be able to use the same syntax and
constructs that we use for our application
programming to talk to the Middle Tier.
We’d like to view the logic in that tier as
objects with methods, or sometimes as a
single logical database, regardless of the
number of real physical databases
involved in the process. Previous solutions
fell very short of this desire, which leads us
to Jaguar CTS.

Note: The Common Object Request Bro-
ker Architecture (CORBA) specification
provides another solution to this problem.
Jaguar will eventually be CORBA-compliant
so you will be able to leverage any Jaguar

Figure 1: The Jaguar Manager

Figure 2: Registering a Component - Language choices

19VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

20 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

work should you need to implement a
CORBA solution as well.

Jaguar CTS
Jaguar CTS is a Component Transaction

Server from Sybase, Inc. It’s currently at
version 1.1, which means it’s still very new,
and still has its share of undesired features.
That’s bugs to you and me. But in truth,
Jaguar is also ten years old and represents
a proven history of providing open solu-
tions. So how can it be both? Jaguar is
based upon Sybase’s Open Client/Open
Server architecture, mainly Open Server.
Open Server was a set of APIs that allowed
you to build business logic that could be
called from the database and referred to in
applications. Unfortunately, every time you
made a change to the logic, you had to
rebuild the Server and it didn’t readily sup-
port a variety of programming languages or
components.

Jaguar is the result of a concerted effort
to take the power of Open Server and make
it usable for the component builder,
regardless of the language used. Unlike
Open Server, Jaguar is a tool that allows
you to register components, which can be
developed in a number of languages and
object models. In particular, Jaguar sup-
ports Java, C/C++ and Active X controls
(C/C++, Visual Basic, PowerBuilder, Delphi,
etc.). Native support for PowerBuilder
code is in development, as is the ability to
use CORBA objects. We’ll focus here on
what we can do in Java.
Product Highlights

Before we dive in, it’s probably good to
know a little bit about what Jaguar can do.
First of all, Jaguar allows you to develop
components which will be placed inside the
server. Once there, Jaguar can provide
access to these components to any lan-
guage or product that can use a .JAVA file, a
.C(PP) file or any product that can call
stored procedures in a database.

Jaguar also provides several features
that make it more than just an object bro-
ker. One of these is transaction manage-
ment. We spoke a little about transaction
management above. Jaguar makes it easy to
group components into a transaction and
specify which components participate.
Jaguar also provides database connection
caching, allowing connections to be reused
and reducing the time it takes to establish a
connection to a database.
Language Independence

One of the biggest advantages to Jaguar
from a component standpoint is the ability
to develop components in a variety of lan-
guages. Equally important is the ability to
use Jaguar as a server from a variety of lan-
guages. The first point allows many compa-
nies to leverage existing code, usually in C

or C++, with minimal
changes. There are
certain restrictions
on what can be
passed into and out
of Jaguar and how
methods are
declared, but these
will be lifted or
reduced in version
1.5. For now, func-
tions that Jaguar will
export must be
declared to return
void. There’s also a
restriction on what
you can pass in as
parameters. Simple
data types such as
integer and string are
fine. More complex
types including
arrays, structures
and objects cannot
be passed in. Proba-
bly the most signifi-
cant impact this has
is on result sets.

Methods in Jaguar
can return a result
set, which is one or
more rows of data,
plus enough metada-
ta to describe the columns. Java has a num-
ber of classes that can act as result set con-
sumers, or you can manually digest the
result set (the metadata is the first row of
the data in this case). Unfortunately, this is
a one way street. You can’t make changes
to the result set and return them in bulk,
or even as the row changes, at least not in
the same manner that you would if you
had obtained the result set directly from
a database. This means that you’ll end up
writing insert, update and delete func-
tions for your server objects so that they
can handle changes, and code in the
client objects that will know when to call
the correct method. You’ll probably have
to keep track of the state of each row with
a flag in order to accomplish this.
Transaction Monitoring

Transaction monitoring allows Jaguar to
provide transaction coordination across
multiple objects. Objects can be marked as
needing to be part of a transaction, either a
new one or one that is already occurring.
Objects that are part of an already occur-
ring transaction only create a new transac-
tion if they are the first object called.
Objects that require a new transaction
always create a transaction for themselves.

Within a transaction, Jaguar keeps track
of commits and rollbacks and intercepts
these calls to the database. A real commit

occurs only when the last object in a trans-
action executes a commit. If any object in
the transaction performs a rollback, the
entire set of statements for the transaction
(including those made by other objects
that issued a commit) will be rolled back.
This allows you to code your components
as if they were the only object in a transac-
tion for testing, but use them with other
objects in production.
Connection Caching

Jaguar also features connection caching.
One of the biggest performance hits of a
database application is the creation of a
connection to the database. Since each
object is distinct and will have its own con-
nection, creating a series of objects could
require a large number of connections, all
using the same database parameters.
Jaguar provides connection caching to min-
imize this work. If a cache exists that
matches the database information of a
requested connection, Jaguar does not per-
form an actual physical connection for each
request. The first time through, a connec-
tion is established, but subsequent
requests result in a logical mapping to the
first physical connection. This results in
faster setup of most components, but it
does require setup for each user. Large
numbers of users can make administration
of the cache a difficult task, similar to the

Figure 3: Generating Stubs/Skeletons

21VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Full pg

22 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

task of database administration. You
should expect to have a Jaguar administra-
tor who will work at least part time on cre-
ating connection caches and registering
components.
Other Features

Jaguar has several other features that
are more for convenience and organization
than for any significant benefit to program-
ming. The next four items are used to group
functionality or determine availability of the
various components to a particular user.
Servers

Jaguar can have several ‘named’ servers
that run on a particular machine. By
default, the first server is named Jaguar and
has listeners on ports 8080 (http) and 7878
(queries and master). New servers can be
created, but they must have different ports
for the various listeners. Roles, packages
and components can also be assigned to a
particular server. This allows you to seg-
ment the functionality your users see at a
very broad level. Assuming you had some
overall concept of three categories of user
(guest, ordinary, administrative), you could
have each connect to a different named
Jaguar server. Packages could be installed
only as needed for each of these servers,
effectively removing sensitive functionali-
ty from unauthorized users. (Note: Roles
can be used to achieve similar functionali-

ty on a more granular level.)
Packages

A package in Jaguar is a set of compo-
nents. By creating a package, you allow for
a larger grouping of functionality, which
makes it easier to manage components. By
installing a package into a particular server,
you allow access to all of the components
in that package. It’s similar to the concept
of a ROLE in a database.
Components

Components are the objects that make
up Jaguar. They have data and methods and
can be grouped into packages. Components
can be written in a variety of languages.
Components cannot be placed into a server
directly; they must be part of a package. The
Jaguar manager provides a number of
options for describing a component, includ-
ing the methods of the component. It’s also
possible to declare a component and its
method signatures prior to creation of the
component. This allows the front end
(client) programmers to begin coding prior
to the completion of the server components.
Roles

Roles are optional in Jaguar, but they
can be used in a similar fashion as ROLES
in a database – namely, to restrict access
to privileged functionality. Jaguar pro-
vides the ability to create users and
assign them to roles, as well as the ability

to assign roles to particular components.

Java and Jaguar
Now that we know a little bit about what

Jaguar is, the question that should be on
the tip of your tongue is why do I need it
and how do I use it? I won’t go into a long
rationale for n-tiered architectures – either
you need one or you don’t. Given that you
need an n-tiered approach, you might need
Jaguar if you have a need for a variety of
languages in the business logic layer, or you
need the benefits of an object manager with
transaction monitoring.

In the next two issues of JDJ, we’ll look
at how to use this. We’ll start by examining
a simple but realistic server component
next month. Then we will focus on how to
use a Jaguar component (any component, it
doesn’t have to be Java, although in our
example it will be) in a client application or
applet.

About the Author
Sean Rhody is a respected industry consultant and a
leading authority on PowerBuilder. He is also editor-
in-chief of the PowerBuilder Developer’s Jour-
nal and one of the authors of “PowerBuilder 5.0:
Secrets of the PowerBuilder Masters.” You
can contact Sean at roadhog@nac.net

1/2 Ad

roadhog@nac.net

23VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Full pg

24 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

My last column focused on several of
Java’s LayoutManagers, which are con-
structs used by developers to position Com-
ponents within Containers using logic
instead of pixel coordinates. We discussed
all of Java’s LayoutManagers except Grid-
BagLayout, which is the focus of this article.

Of all of Java’s LayoutManagers, Grid-
BagLayout offers the developer the most
precision in positioning Components.
This ability comes at a great expense, as
GridBagLayout is the most complicated
(and probably the most poorly docu-
mented) LayoutManager in the AWT. Grid-
BagLayout works integrally with a helper
class called GridBagConstraints to place
Components on the screen. Basically, a
developer will set values in the GridBag-
Constraints object that specify things
such as:
• Where the component will appear on the

screen in relation to the other Compo-
nents

• How tall and wide the component is
• How the component grows when the con-

tainer resizes

A method provided in GridBagLayout
will bind the constraints to a particular
Component. When the Component is added
to the Container (using the add method),
GridBagLayout will use the information in
the Components corresponding GridBag-
Constraints object to determine the Com-
ponent’s position and size.

In short, the process is:
1. Create Component
2. Set GridBagConstraints for Component
3. Bind Component and GridBagConstraints

object
4. Add Component

Most of the work involved in using Grid-
BagLayout is setting the constraints cor-
rectly.

As the name implies, GridBagLayout has
something to do with a grid (and a bag).

GridBagLayout is similar to GridLayout in
the following regards:
• The Container is divided into a grid.
• Components are added to the cells of

the grid.

The differences between GridLayout and
GridBagLayout are more striking:
• Components do not necessarily fill their

entire cell.
• All cells are not of equal size, meaning

that all columns do not necessarily have
the same number of cells, and all rows
do not necessarily have the same num-
ber of cells.

Also, GridBagLayout offers no methods
to explicitly define the number of
rows or columns in the grid, nor
does it have methods to define the
size of each cell in the grid. Instead,
GridBagLayout calculates the num-
ber of rows and columns in a grid by
the number of Components placed
on the screen. If a container has five
Components lined up horizontally,
then the grid consists of five
columns and one row. If the Con-
tainer has five Components lined up
vertically, then the grid consists of
one column and five rows. So how
do you know how many columns
and rows your GUI will have? Well,
the best way is to hand draw your
GUI and create the grid for yourself.
Figure 1 shows a standard
source/destination kind of GUI. Note
the dashed lines and numbers. We
have gone along the X axis and
made a mark when we came into
contact with the upper-left hand
corner of a Component. We have
done the same thing along the Y
axis. Keep in mind when you do this
on your own that you should mark
only the upper left hand corner of
the Component. After the exercise

is complete, you are left with the grid your
GridBagLayout will use to place Compo-
nents.

Once the grid is complete, we have
some very important pieces of informa-
tion; the upper left hand coordinate of each
Cell, and the width and height of each Cell.
GridBagConstraints has data members that
maintain this information and need to be
set for the GUI to work. The data members
are: gridx, gridy, gridwidth and gridheight.
Look at Figure 2 to see the cells of the grid
and Table 1 to see the GridBagConstraints
attributes for each Component.

In our program, we have created a
helper method, addComponent, to assist in
setting the constraints. Notice that we do
not have to create a new GridBagCon-
straints object every time we add a Compo-
nent. Also notice the sequence of events:
First we set constraints, then we bind the
constraints to the Component using the set-
Constraints method and finally we add the
Component. Be sure to do things in this

For the most precision in placing Components

FROM THE GROUND UP

by John Tabbone

Becoming Friends
with GridBagLayout

Figure 1

Figure 2

25VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Full pg

26 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

27VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

order to avoid confusion! Look at Listing 1
for the complete code listing. And congrat-
ulations! If you can get this far, you have
done the hard part.

Once the program has been compiled
and executed we find that the results are
not quite the same as our intention. The
code needs some refinement. Look at Fig-
ure 3 for the output of the program. Notice
that the four buttons in the center are not
aligned, and everything is squished togeth-
er in the center of the screen. The remain-
ing tasks involve setting more constraints
attributes on each Component.

GridBagConstraints.fill
The default value for the fill is NONE,

meaning that a Component will not grow to
fill its entire cell if there is extra space avail-
able in the cell. Look at the > button and the
>> button. The width of the column is the
width of the >> button (column width is
always the width of the widest cell in the
column). Using the fill attribute, we can
specify that a Component will fill in one of
four ways:
• GridBagConstraints.VERTICAL – The

Component will grow taller, but not wider.
• GridBagConstraints.HORIZONTAL – The

Component will grow wider, but not taller.
• GridBagConstraints.BOTH – The Compo-

nent will grow both vertically and hori-
zontally

• GridBagConstraints.NONE – The Compo-
nent will not grow to fill extra cell space.

GridBagConstraints.anchor
The anchor attribute specifies where

in the cell the component will be placed.
The default value is CENTER. Other val-
ues are: NORTH, NORTHEAST, EAST,
SOUTHEAST, SOUTH, SOUTHWEST,
WEST and NORTHWEST. Look at Figure 4
and the code snippet in Listing 2 to see
what happens to the labels and OK and
Cancel buttons when the anchors are
adjusted. Note that if the fill is set to
BOTH, setting the anchor is pretty
meaningless.

GridBagConstraints.weightx and
GridBagConstraints.weighty

If you have taken the time to type in
the code provided in Listing 2 and played
around with the resulting Frame, you will
have noticed that regardless of the size of
the frame, the Components cluster in the
middle of the Container and don’t resize
when the Frame resizes. Ascribing a
weight to a Component will allow the
Components cell to grow or shrink with
the Container. Keep in mind that it is only
the cell size that changes, not the Com-
ponent in the cell. The default value for
weightx and weighty is zero, meaning that

extra space in the Contain-
er will not be absorbed by a
cell. A non-zero weightx
indicates the ratio describ-
ing how extra space will be
distributed among horizon-
tally neighboring cells. For
example, if the OK button
has a weightx of 2, and the
Cancel button has a
weightx of 1, when the
Frame is made wider, the
OK Button’s cell will
receive 2 pixels for every
one received by the Cancel
Button. The same is true for
weighty neighbors. In gen-
eral, the greater the weight,
the more space the cell will
receive.

Note also that weights
affect the cell size, not the
Component size. Here is
where some of the other
attributes of GridBagCon-
straints will play an impor-
tant role. If the fill is set to
something other than
NONE, and a cell has a non-
zero weight, the Compo-
nent itself will grow to fill
any newly acquired space
in the cell. Alternatively, if
an anchor is set to something other than
CENTER, and a cell has a weight other
than zero, the positioning of a Component
within a cell will be more apparent. Play
around with it!

GridBagConstraints.insets
Insets add a border of a fixed pixel size

to the inner perimeter of the cell. Adding
insets may make the size of the Component
shrink.

Figure 4

Figure 5

Figure 3

28 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Listing 1.
import java.awt.*;

public class gbl1
{

List sourceList;
List destinationList;
Button addButton;
Button addAllButton;
Button removeButton;
Button removeAllButton;
Button OKButton;
Button cancelButton;
Label sourceLabel;
Label destinationLabel;
Frame aFrame;

GridBagLayout gbl;
GridBagConstraints gbc;

public gbl1()
{
sourceList = new List();
destinationList = new List();
addButton = new Button(" >");
addAllButton = new Button(">>");
removeButton = new Button(" <");
removeAllButton = new Button("<<");

OKButton = new Button("Ok");
cancelButton = new Button("Cancel");
sourceLabel = new Label("Source");
destinationLabel = new Label("Destination");
aFrame = new Frame();
gbl = new GridBagLayout();
gbc = new GridBagConstraints();

aFrame.setLayout(gbl);
buildFrame();
aFrame.setSize(300,200);
aFrame.show();

}

public void buildFrame()
{
addComponent(0,0,1,1,aFrame,sourceLabel);
addComponent(2,0,1,1,aFrame,destinationLabel);
addComponent(0,1,1,4,aFrame,sourceList);
addComponent(2,1,1,4,aFrame,destinationList);
addComponent(1,1,1,1,aFrame,addButton);
addComponent(1,2,1,1,aFrame,addAllButton);
addComponent(1,3,1,1,aFrame,removeButton);
addComponent(1,4,1,1,aFrame,removeAllButton);
addComponent(0,5,1,1,aFrame,OKButton);
addComponent(2,5,1,1,aFrame,cancelButton);

}

/**

GridBagConstraints.ipadx and
GridBagConstraints.ipady

ipadx and ipady (internal padding x and
internal padding y) will add a fixed number
of pixels to the width and height of a com-
ponent. They will make the size of the Com-

ponent larger. See Figure 5 to see the differ-
ences between insets and internal padding.

GridBagLayout Tips
Once you successfully develop a screen

using GridBagLayout, you may want to

change it later. This will be difficult if you
have used consecutive numbers for your
gridx and gridy values. For example, if you
wanted to squeeze another Component in
between the add Button and the addAll But-
ton, you would have to enter new gridy val-
ues for all of the Components appearing
below the new Component. Instead, it is a
good practice to make your gridx and gridy
values multiples of 10. Instead of column
numbers being 1,2,3 they should be
10,20,30. The same is true for rows. A co-
worker has noticed that this is also a good
practice in defining line numbers for BASIC
programming.

I have not discussed GridBagCon-
straints.RELATIVE and GridBagCon-
straints.REMAINDER. Don’t use them until
you read my next column! As with any other
topic in programming, the best way to learn
it is to play around with the code, so please
do so.

About the Author
John V. Tabbone is a lecturer at New York Universi-
ty’s Information Technologies Institute, where he
teaches two Java programming courses and advises
on curriculum development. He has been a profes-
sional Java programmer since early 1996 and con-
tinues to consult on and develop systems for a variety
of New York-based businesses. You may e-mail him
with questions and comments at
john.tabbone@nyu.edu

Name gridx gridy gridwidth gridheight

sourceList 0 1 1 4

destinationList 2 1 1 4

addButton 1 1 1 1

addAllButton 1 2 1 1

removeButton 1 3 1 1

removeAllButton 1 4 1 1

OKButton 0 5 1 1

cancelButton 2 5 1 1

sourceLabel 0 0 1 1

destinationLabel 2 0 1 1

john.tabbone@nyu.edu

Table 1

29VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

*A helper method to add Components to a Container using
* GridBagLayout
*/
public void addComponent(int x, int y, int w, int h, Container
aContainer, Component aComponent)
{
gbc.gridx = x;
gbc.gridy = y;
gbc.gridwidth = w;
gbc.gridheight = h;
gbl.setConstraints(aComponent, gbc);
aContainer.add(aComponent);

}

public static void main(String[] args)
{
gbl1 myLayout = new gbl1();

}

}// end class

Listing 2.
public void buildFrame()
{
gbc.anchor = gbc.EAST;
addComponent(0,0,1,1,aFrame,sourceLabel);
gbc.anchor = gbc.WEST;
addComponent(2,0,1,1,aFrame,destinationLabel);
gbc.anchor = gbc.CENTER; // back to default
addComponent(0,1,1,4,aFrame,sourceList);
addComponent(2,1,1,4,aFrame,destinationList);
addComponent(1,1,1,1,aFrame,addButton);
addComponent(1,2,1,1,aFrame,addAllButton);
addComponent(1,3,1,1,aFrame,removeButton);
addComponent(1,4,1,1,aFrame,removeAllButton);
gbc.anchor = gbc.EAST;
addComponent(0,5,1,1,aFrame,OKButton);
gbc.anchor = gbc.WEST;
addComponent(2,5,1,1,aFrame,cancelButton);

}

Listing 3.
import java.awt.*;

public class gbl1
{

List sourceList;
List destinationList;
Button addButton;
Button addAllButton;
Button removeButton;
Button removeAllButton;
Button OKButton;
Button cancelButton;
Label sourceLabel;
Label destinationLabel;
Frame aFrame;

GridBagLayout gbl;
GridBagConstraints gbc;

public gbl1()
{
sourceList = new List();

destinationList = new List();
addButton = new Button(" >");
addAllButton = new Button(">>");
removeButton = new Button(" <");
removeAllButton = new Button("<<");
OKButton = new Button("Ok");
cancelButton = new Button("Cancel");
sourceLabel = new Label("Source");
destinationLabel = new Label("Destination");

sourceLabel.setAlignment (Label.CENTER);
destinationLabel.setAlignment (Label.CENTER);
aFrame = new Frame();
gbl = new GridBagLayout();
gbc = new GridBagConstraints();

aFrame.setLayout(gbl);
buildFrame();
aFrame.setSize(300,200);
aFrame.show();

}

public void buildFrame()
{
addComponent(0,0,1,1,gbc.HORIZONTAL,1,1,aFrame,sourceLabel);
addComponent(2,0,1,1,gbc.HORIZONTAL,1,1,aFrame,destinationLabel
);

addComponent(0,1,1,4,gbc.BOTH,10,10,aFrame,sourceList);
addComponent(2,1,1,4,gbc.BOTH,10,10,aFrame,destinationList);
addComponent(1,1,1,1,gbc.NONE,1,1,aFrame,addButton);
addComponent(1,2,1,1,gbc.NONE,1,1,aFrame,addAllButton);
addComponent(1,3,1,1,gbc.NONE,1,1,aFrame,removeButton);
addComponent(1,4,1,1,gbc.NONE,1,1,aFrame,removeAllButton);
addComponent(0,5,1,1,gbc.HORIZONTAL,0,2,aFrame,OKButton);
addComponent(2,5,1,1,gbc.HORIZONTAL,0,2,aFrame,cancelButton);

}

public void addComponent(int x, int y, int w, int h, int fill,
int xWeight, int yWeight, Container aContainer, Component aCompo-
nent)
{
gbc.gridx = x;
gbc.gridy = y;
gbc.gridwidth = w;
gbc.gridheight = h;
gbc.fill = fill;
gbc.weightx = xWeight;
gbc.weighty = yWeight;
gbl.setConstraints(aComponent, gbc);
aContainer.add(aComponent);

}

public static void main(String[] args)
{
gbl1 myLayout = new gbl1();

}

}// end class

Don’t Type it… Download it!
Access the source code for this and
other articles appearing in this issue

at JavaDevelopersJournal.com

30 Java DEVELOPER’S Journal • VOLUME: 3 ISSUE: 4 http://www.JavaDevelopersJournal.com

Last month, we started a fun project in
creating a chat room applet. The overall
project illustrates how to create Perl
scripts which will be used as back-ends for
your Java applets. The Java applets will
interact with the Perl program using a stan-
dard CGI interface. While you can have a lot
of fun with this lightweight chat applet, my
goal for you, however, is to look beyond
this little applet and ask yourself, “How else
can I use this method of sending data to a
Web server, and process it on the Server
side?”. You can, for instance, use this to
make a shopping cart, maintain data with-
out using cookies, send a transaction to
Cybercash (which uses Perl Scripts), etc.

This month, we will focus on the client-
side Java applet. This is what the world will
see as the chat room. To effectively do this,
I have chosen to create an applet object and
a Panel object. The applet will simply act as
a container for the Panel object. The Panel
object will then be the meat of the project.

The Chat class is derived from the applet
Class. This class will be called by the HTML
Web page, which can contain parameters
that the applet will extract. The parameters
will be used to set the path to the Perl pro-
gram and name of the log file. The log file,
which gets created and maintained by the
Perl Script, will reside on the Web server. In
it, we will store the last ten chat submissions
in order of most recent first.

The init() method of the Chat class will
use the ternary operator as a method to
extract the parameters in the HTML file.
Normally, I never use the ternary operator

for anything since it is sort of cryptic. I use
it here, however, because it lends itself to
this purpose. The init() method also makes
an instance of the ChatPanel object which
will actually contain the chat engine. After
setting the applet’s layout to BorderLayout,
I have added the ChatPanel object to it in
its Center position (see Listing 1).

The start() and stop() methods just call
the ChatPanel object’s start() and stop()
methods, respectively. This will be impor-
tant not only for starting and stopping the
chat thread, but for sending a message to
the Web server that the client has
entered/exited the chat room.

public void start(){
chatScreen.start();

}
public void stop(){

chatScreen.stop();
}

Finally, I have declared an accessor
method to get the cgiPath, called getCGI-
Path(). This method will be called from
within the SubmitToChatServer objects.

public String getCGIPath(){
return cgiPath;

}

ChatPanel chatScreen;

Thread runner = null;
String chatLogFileName, cgiPath;

}

The ChatPanel class is quite complex. It
implements Runnable, since we will use a
Thread to refresh the chat data on our
screen. This object will extend Panel, which
we will configure as a CardLayout contain-
er. It will contain two additional Panels, one
of which will gather setup information,
such as the client’s desired chat name, and
the other will display the actual chat mes-
sages.

To construct this object, we will pass
two parameters:
• A handle to the applet
• A String that will specify the file name of

the chat log

After initializing some instance vari-
ables, we construct the panels. To build
them, I have opted to nest some additional
components, such as Panels, instead of
using GridBagLayout. Both the Setup and
Chat panels use BorderLayout. This

JDJ FEATURE

by Joseph DiBella

PART 2

Interfacing Java

applets with Perl

scripts using CGI

31VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

method adds the various AWT components
needed to these panels using the standard
add() method. After each Panel is con-
structed, we will add them to the card lay-
out panel, which will contain them (see
Listing 2).

The start method checks to see if the
user has entered a name. It the user has not
entered a name to chat with, it will bring
the setup panel to the front and request
focus for the TextField, which will be where
the user will enter a name. If the user has
entered a name, we will create a new Sub-
mitToChatServer object with a message
indicating that this person has entered the
chat room. On the same line, we start() that
object, which will, in turn, spawn a new
Thread to send that data to the chat server.
Each line we send to the chat server will
work exactly in this way, spawning a sepa-
rate thread with which to send the data.
Next, we will start our chat engine by creat-
ing another thread for it, if one does not
already exist, and starting it. This will, in
turn, invoke this object’s run() method in
the thread (see Listing 3).

The stop() method will do a simi-
lar thing to what the start() method
does. It will create another Submit-
ToChatServer object with a message
indicating that the user has left the
chat room and start the process of
sending it in another thread. After
doing so, it will stop the chat engine’s
thread so that we will not be con-
stantly refreshing the screen.

public void stop(){
if(runner != null){

new SubmitToChatServ-
er("*** "+identity+" Has Left This
Chat Room. ***",app,
chatFileName).start();

runner.stop();
runner = null;

}

}

The run() method will be the heart of
the chat engine. The first thing we do is
request focus on the TextField, which will
be used for chat entry. The next part of this
method required some thought and experi-
mentation. Since the AWT’s TextArea object
does not wrap text to the next line when we
have reached the right side of it, I needed to
develop my own text wrapping technique.
In order to do this, we need to figure out the
width, in pixels, of the average character in
a specific font. I did this by using a Font-
Metrics object for the chatArea. I deter-
mined the width of a string which contains
the alphabet in upper and lower case. I
have even included some spaces and peri-

ods. Then, I divided the length of this string
by the number of characters in it. This
gives me the average width, in pixels, of the
text that users may type in. I can later com-
pare this to the width of the Text area to
determine how many characters will fit on a
line. Once this is done, we go into an infinite
while loop, which invokes a method called
refresh() and pauses the thread for the
length of time specified in refresh time (see
Listing 4).

As you may have guessed, the refresh()
method will be used to refresh the chat
data on the screen. It will be responsible for
downloading the chat log file and parsing
its information. First, it creates a URL
object for the chat log file. Next, we create
a DataInputStream object, which we will
use to read its data. Since the log file stores
its most recent data first, we will need to
read each line and pre-pend it to the front
of a temporary String, named chatData,
which will be used to store the new data
with the oldest data first. The first line we
read (Most Recent Chat) will be stored for

the next time this method is called. Each
line read will need to be processed by the
processText() method. This method will
perform the wrapping of text if necessary.
We will keep doing this on a line by line
basis, until we read a line that matched the
first line read from the previous iteration of
this method. When finished, we will append
the temporary String to the chatArea
TextArea and close the stream. To force the
TextArea to scroll down to the bottom, we
will select the last character of text con-
tained within it (see Listing 5).

The processText() method is responsi-
ble for word wrapping within the TextArea.
It takes the unprocessed text in as a para-
meter and returns the processed text as a
String. If the text contains fewer characters
than the average characters per line, then
we will simply return the text with two new-
line characters appended to it. If the text
contains more characters than the average
characters per line, then we examine the

first group of characters that fit on a line.
We count backwards until we find the last
instance of a space. Here, we will insert a
new-line character and repeat the process
on the remaining text after we pre-pend the
person’s name, which we extract from the
text, to the beginning of the remaining text.
When finished, we return the completed
processed text with two new-line charac-
ters appended to the end (see Listing 6).

Since most browsers in use today do not
support 1.1, I still use the 1.0 event model
for applets. The handleEvent method is
used for both the setup and chat panels.
Here, we simply handle the action events
for the buttons, as well as if the person gen-
erates an action event on a TextField (by
pressing the enter key, for instance). If the
target is the chatLine or the sendButton, we
call the sendChat() method. If the target is
the nameField or the setupButton, we need
to check if they have actually entered a
name. If not, we tell them to enter a name. If
they have entered a name, we enter the
chat room, show the chat panel and start

the chat engine (see Listing 7).
The sendChat() method simply

creates a new SubmitToChatServer
object with the text to be sent to the
Perl Script. The text is a String con-
structed with the identity of the per-
son and the text extracted from the
chatLine TextField. We need to start
the transfer, so we invoke the start()
method on this object, which will
send the chat line in a new Thread.
Next, we need to clear the chatLine
TextField.

void sendChat(){

new SubmitToChatServer(iden-
tity+" >: "+chatLine.getText(),app,chatFile-
Name).start();

chatLine.setText("");

}

To finish off this class, I have written a
number of accessor and mutator methods.
These include:

setRefreshTime()
setIdentity()
getIdentity()
setChatLogName()

I may use these methods later if I wish to be
more elaborate in my applet class (see List-
ing 8).

There may be a number of things you
wish to do to optimize this Chat applet. For
instance, you may want to move the refresh
time up or down depending on your chat
traffic. Remember, however, that you will be

“How else can I use

this method of sending

data to a Web server,

and process it on

the Server side?”

32 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

refreshing at longer or shorter intervals
and each refresh will read the current log
file, which stores up to twenty lines of chat.
If you have heavy traffic in your chat room,
more than twenty lines may have been sub-
mitted during that time period. You may
want to alter the Perl Script to store more
lines; however, twenty seem to be more
than adequate in most situations.

In addition, I have noticed that perfor-
mance is drastically improved when using
ISAPI Perl with IIS on Windows NT Server. You
can download this for free at
http://www.activestate.com. Note: You will
need both the Win32 and ISAPI versions. The

ISAPI version must be installed on top of the
Win32 version. You may need to edit the reg-
istry, particularly in the scriptmap section
under HKEY_LOCAL_MACHINE\System\Cur-
rentControlSet\Services\W3SVC\Parame-
ters\Scriptmap. Here, you would want to
make sure the Perl is registered to the file
extensions .pl and .cgi. The .pl should be set
to C:\Perl\bin\perlIS.dll and the .cgi should
be set to C:\Perl\bin\Perl.exe %s %s. If you
want to use the ISAPI version, rename your
Perl Script’s extension to .pl and make this
modification in the Java program as well,
where the Perl Script is referenced.

Well, that’s it. I hope you have had a lot

of fun with this project. It demonstrates
several exciting methods of interacting
with a Web server and introduces many
new possibilities for your applets.

About the Author
Joseph M. DiBella is the Senior Java Instructor and
Curriculum Developer for Computer Educational Ser-
vices in New York City. He also is the President of
HMJ Electronics, a computer consulting company
which develops software and Java-enhanced Web
sites. Joe can be reached at lite-n-sweet@java-
joe.com

Listing 1.
public void init() {

super.init();

chatLogFileName = getParameter("logfile") != null ? getParame-
ter("logfile") :"chatlog";

cgiPath = getParameter("cgipath") != null ? getParame-
ter("cgipath") : "cgi-bin/";

chatScreen = new ChatPanel(this,chatLogFileName);

setLayout(new BorderLayout());
add("Center",chatScreen);

}
Listing 2.
public class ChatPanel extends Panel implements Runnable{

ChatPanel(Applet app,String fileName) {

super();
this.app = app;
chatFileName = fileName;
//Build the Setup Panel
Panel setup = new Panel();
Panel setupNorth = new Panel();
Panel setupCenter = new Panel();
Panel setupSouth = new Panel();
setup.setBackground(Color.cyan);
setupButton = new Button("Enter Chat Room");
nameField = new TextField(20);
nameField.setBackground(Color.white);
setupCenter.add(new Label("Enter Name:"));
setupCenter.add(nameField);
setupCenter.add(setupButton);
setupNorth.setFont(new Font("TimesRoman",Font.BOLD,36));
setupNorth.add(new Label("Welcome to Chat"));
setupSouth.setFont(new Font("TimesRoman",Font.BOLD,36));
setupSouth.add(new Label("You Must Enter A Chat Name"));
setup.setLayout(new BorderLayout());
setup.add("North", setupNorth);
setup.add("Center", setupCenter);
setup.add("South", setupSouth);
//Build the Chat Panel
Panel chat = new Panel();
chat.setBackground(Color.black);
chat.setLayout(new BorderLayout(10,10));
northPanel = new Panel();
southPanel = new Panel();
northPanel.setBackground(Color.cyan);
northPanel.setFont(new Font("TimesRoman", Font.BOLD,24));
northPanel.add(new Label("Joseph DiBella's Cyber-Chatter-

box"));
chat.add("North", northPanel);
chatArea = new TextArea("Welcome to Joe DiBella\'s Chat

Applet\n\n");
chatArea.setEditable(false);
chatArea.setBackground(Color.cyan);
chatArea.setForeground(Color.black);
chatArea.setFont(new Font("Helvetica", Font.BOLD,14));
chat.add("Center",chatArea);
chatLine = new TextField();
chatLine.setBackground(Color.white);
sendButton = new Button("Send");
southPanel.setLayout(new BorderLayout(5,5));
southPanel.add("Center",chatLine);
southPanel.add("East", sendButton);
chat.add("South", southPanel);

clayout=new CardLayout();
setLayout(clayout);
add("Setup", setup);
add("Chat", chat);

}

Listing 3.
public void start(){

if(identity != null){
new SubmitToChatServer("*** "+identity+" Has Entered

This Chat Room. ***",app,chatFileName).start();
if(runner == null){

runner=new Thread(this);
runner.start();

}
}else{

clayout.show(this,"Setup");
nameField.requestFocus();

}
}

Listing 4.
public void run(){

chatLine.requestFocus();
// Figure out line length in pixels
FontMetrics fm = chatArea.getFontMetrics(chatArea.get-

Font());
aveChar = fm.stringWidth("ABCDEFGHIJKLMNOPQRSTUVWXYZabcde-

fghijklmnopqrstuvwxyz ")/62;
aveCharsPerLine = this.size().width/aveChar;

// Start the chat engine
while(true){

refresh();
try{

lite-n-sweet@java-joe.com

33VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

AD

34 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Thread.sleep(refreshTime);
}catch(InterruptedException e){}

}

}

Listing 5.
void refresh(){

try{
log = new URL(app.getDocumentBase(),chatFile-

Name+".log");

DataInputStream din = new
DataInputStream(log.openStream());

String tempLastLine=lastLine;
String in="";
String chatData = "";
boolean first = true;
boolean finished = false;

while((in=din.readLine())!=null){

if(in.startsWith(lastLine)){
finished = true;

}
if(!finished){

if(first){
tempLastLine=in;
first=false;

}

chatData = processText(in)+chatData;
}

}

chatArea.appendText(chatData);
lastLine=tempLastLine;
din.close();

}catch(Exception e){
System.out.println("Error in refresh:" +

e.toString());

}
// Force the Text Area to scroll to the end

chatArea.select(chatArea.getText().length(),chatArea.getText().leng
th());

}

Listing 6.
String processText(String text){

/* This method is responsible for word wrapping in the
text area. If a line is longer than

the width of the Text area, we will insert a new-line
chatacter in place of a space */

int textLength = text.length();
if(textLength <= aveCharsPerLine){

return text+"\n\n";
}
// We will need the name of the person if we need to

wrap. This extracts that info
String chatName = text.substring(0,text.indexOf(">:")+2);
String processedText = "";

while(text.length() > aveCharsPerLine){
int i = text.lastIndexOf((int)' ',aveCharsPerLine);
try{

processedText += text.substring(0,i)+"\n";
text = chatName + text.substring(i);

}catch(Exception e){/* code for exception*/
System.out.println("Error processing text:" +

e.toString());

}
}

return processedText+text+"\n\n";

}

Listing 7.
public boolean handleEvent(Event event) {

if (event.id == Event.ACTION_EVENT && (event.target ==
sendButton||event.target == chatLine)) {

sendChat();
chatLine.requestFocus();
return true;

}
if (event.id == Event.ACTION_EVENT && (event.target ==

setupButton||event.target == nameField)){
if(nameField.getText().equals("")){

app.showStatus("You must enter a name");
nameField.requestFocus();

}else{
app.showStatus("Entering Chat Room");
setIdentity(nameField.getText());
clayout.show(this,"Chat");
start();

}
return true;

}

return super.handleEvent(event);
}

Listing 8.
public void setRefreshTime(int i){

refreshTime = i;
}

public void setIdentity(String i){
identity = i;

}
public String getIdentity(){

return identity;
}
public void setChatLogName(String i){

chatFileName = i;
}

//{{DECLARE_CONTROLS
private TextArea chatArea;
private TextField chatLine;
private Panel northPanel, southPanel;
private Button sendButton;
private Applet app;
private int refreshTime = 10000;
private int aveChar, aveCharsPerLine, chatSize;
private String identity = null;
private String chatFileName = "chatlog";
private URL log;
private String lastLine=" ";
private Thread runner;
private Button setupButton;
private TextField nameField;
private CardLayout clayout;

//}}
}

35VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

36 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Trying to develop applica-
tions in conjunction with
a database can be a
nightmare. Customer
orders must be filled,
accounts payable must
be debited and inventory

must be adjusted. Performing
a task like this directly from the Internet
lends itself to the flexibility and platform
independence of Java.

Wouldn’t it be nice if it was as simple to
use elements of a database as objects in
your Java applications, threading them
directly to the Database? Well the applica-
tion you’ve been dreaming of is here.

CocoBase Enterprise from THOUGHT,
Inc. is a powerful new point-and-click Data-
base Access language creation and manage-
ment tool. It is Pure Java, a snap to use and
best of all, it’s 100% scalable.

System Requirements
CocoBase Enterprise runs on any JDK

1.1x or JDK 1.02 enabled system. I ran it
over JDK 1.1.5 on a 150MHZ Pentium with
16MEG and WIN95, and it performed fine.

Installation
Installation of my demo version was ini-

tiated at the command prompt. Making the
installed directory current, I needed to type
only: java install_cocodemo3tier11_1027_
timeout1201. A GUI interfaced wizard then
opened, making installation effortless.

THOUGHT Inc. provides a test program
called COCODEMO to verify if the installa-
tion was done properly. This demo applet
needs the application server to attach
itself to. Thus, it’s necessary to start the
three-tier CocoBase Enterprise Applica-
tion Server by adding the CocoBase home
directory\demos to the CLASSPATH, then
typing the path to the startserver.bat file.
Another command window opens, typing
the command to start the cocodemo.bat

file. This opens a customer demo applet.
By typing “My Customer” in the input win-
dow and then clicking “Find”, an existing
sample of customer data should appear in
the applet window. This automatically per-
forms and logs the request, which will
appear in the server window, not the
client.

A Trial Run
Once you have CocoBase Enterprise up

and running, the best way to showcase the
application’s many attributes is to go
through a trial run. Open a command
prompt and execute the proper demo batch
file. The file you execute varies depending
upon which JDK you’re running. If done
successfully, this will open a login applet
screen with user name and password
already filled in. Merely clicking the “login”
button gets you started.

Let’s try running through the “SELECT”
operation on object schema: “Customer”.
Click File-Open to view the object schemas
that come with this demo. Click “Current
Data for Select Fields” grid. Select the
“Name” field by clicking on that row. Click
“View”-“Select”-“Clauses”. This will display
the “Current Data For Select Conditions”
grid. Select the first data row of the grid by
clicking on that row. Click “Grid” - “Update”
to view how the condition is defined. Click
CANCEL after viewing. Click “View” -“Show
SQL” -“Show Select” to view the construct-
ed “SELECT” SQL statement for this object
schema. This very same process can be run
through for the “Insert” and “Update” oper-
ations as well.

Application developers no longer need
to concern themselves with learning the
database access language, but can spend
their time on developing specific applica-
tions. CocoBase can handle full table span-
ning select, updates, inserts, deletes and
procedure calls without recompiling of the
client-side Java application.

Other Features of CocoBase
Enterprise,
• Object binding for Mainframe, Object and

Relational databases: This means that
unlike some other products in this space,
customers are not restricted to using a
Relational Database as their only source
of data

• Speed: Performance has been clocked up
to 30 times faster than standalone type 3
or type 4 JDBC drivers. This is possible
because the CocoBase API sends only the
application objects and no meta data
between client and server.

• Enterprise scalability: CORBA or RMI is
used as a transport layer for the objects.
Adapters have been developed for the
different transport layers that act as plug-
ins to the system at run time.

• Distributed Architecture
• Connectivity to standard Java Develop-

ment Environments with JavaBeans™
(Bean source code included)

• Upgrade from 2-tier to 3-tier implementa-
tion without recompiling

• Ability to use the same Java application
across multiple databases without
recompiling

• Ability to generate relational tables from
existing Java code

• Ability to generate commented Java code
from existing relational tables including
foreign key relationship code

• Ability to integrate existing Java, C and
C++ code into the Application Server
If you’ve been scorched by the task of

developing Java applications from a data-
base, try using CocoBase Enterprise to cool
and soothe the burn!

Turn Your Java into a Database
Access Powerhouse!

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
CocoBase Enterprise
THOUGHT, Inc.
657 Mission Street, suite 202
San Francisco, CA 94105
Phone: 415 836-9199
Fax: 415 836-9191
Web: http://www.thoughtinc.com
Email: cocobase.support@thoughtinc.com

CocoBase Enterprise
by THOUGHT, Inc.

PRODUCT REVIEW

by Ed Zebrowski

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

37VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

38 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Most interactive applications require
online help – Java applications are no
exception. To address this need, Sun
Microsystems, Inc. has developed the
JavaHelp API and help system. The Java-
Help software fills a void in the help mar-
ket for a cross-platform, browser-indepen-
dent help format that will eliminate the
need to develop costly proprietary Java
technology-based help systems or settle
for a platform-dependent solution that will
require you to rewrite your help system
for each platform.

Written entirely in the Java program-
ming language, the JavaHelp help system
provides capabilities for navigating,
searching and displaying help information,
making it easy for an end-user to acquire
knowledge about how to use an applica-
tion or applet. Using the JavaHelp soft-
ware, developers and authors are able to
incorporate online help for components,
applets, applications, operating systems,
devices and Web pages. Developers can
also use the JavaHelp software to distrib-
ute online documentation in a corporate
intranet or Internet.

The JavaHelp system offers a full-fea-
tured help system, including its own help
viewer, which consists of a toolbar, con-
tent pane and navigation pane. The con-
tent pane uses HTML 3.2 as its format for
displaying topics and can run Java
applets. The navigation pane provides the
table-of-contents (TOC), index and full-text
search navigational controls. The TOC
supports a collapsible and expandable dis-
play of topics and an unlimited number of
hierarchical levels. The file formats for the
navigational controls are all XML-based.

Through the JDK internationalization
feature, the JavaHelp software will support
internationalization. Localization of help
content, indexes and table of contents are
supported and are loaded in a locale-spe-
cific way.

The JavaHelp system, designed to be
very flexible, can be displayed in its own
primary window or embedded in an appli-

cation. In fact, because the JavaHelp sys-
tem is based on the Java Foundation Class-
es (JFC) components, the navigational
controls and the viewer can be individual-
ly embedded in an application. In addition,
help projects can be merged using multi-
ple TOCs and indexes.

Packaging help information is also very
flexible with the JavaHelp software. The
JavaHelp system information is delivered
in a JAR file, which compresses and encap-
sulates the help files into a single file. The
JavaHelp system can extract help informa-
tion files from the JAR file as they are
required.

The flexibility and ease of integration of
the JavaHelp API makes it easy for devel-
opers to customize and extend the user
interface and functionality. It allows cus-
tom or third-party navigational controls,
search engines and content viewers to be
added. In addition, applets can be used to
extend the help system with additional
functionality. The JavaHelp system will
provide some applets, including applets
for pop-up and see-also windows.

Designed for the Java platform, the
JavaHelp software will work especially
well with networked applications. The
help data and search functionality can
reside on either the client-side or server-
side. Help data and new functionality can
be dynamically updated over the web.
Coupled with its cross-platform benefits
and network design, the JavaHelp software
is ideal for use in a heterogeneous envi-
ronment, such as the Internet or corporate
intranet.

There are other help formats available
today, both Java technology-based and
non-Java technology-based formats. How-
ever, none meets the needs of an industri-
al strength, cross-platform, browser-inde-
pendent solution that Sun is offering
through the JavaHelp API. Many of the
other existing Java technology-based help
formats are proprietary help systems or
developments done by smaller companies
that may not offer extensive support for

their help systems. In addition, many of
these formats are inadequate for support-
ing a sophisticated, complex help system
that is needed by large, complex applica-
tions. In regards to help formats that are
not written in the Java programming lan-
guage, such as WinHelp and HTML Help,
they do not offer the benefits of the Java-
Help software, as they are dependent on a
specific platform and browser. Incidental-
ly, many of the proprietary Java-based
help systems are moving to support Java-
Help API. For example, Sun’s Java Work-
shop™ help, a customized help system
specific to Java Workshop product, plans
to migrate to the JavaHelp system in a
future release.

One of the biggest requests from cus-
tomers for developing a JavaHelp system
is having help authoring tools available.
Because the JavaHelp software is being
developed by an open, industry-participa-
tive process, it has received widespread
support from the industry and help
authoring tool vendors. The leading help
authoring vendors have publicly
announced support for JavaHelp, includ-
ing Blue Sky Software, ForeFront, Wextech
Systems, Creativesoft, Quadralay, Virtual
Media and HyperAct. These authoring
tools will make it easy for authors to devel-
op the JavaHelp system by offering a sim-
ple conversion utility to generate the Java-
Help help format.

Sun has announced that the JavaHelp
software will be delivered as a standard
extension to the next release of the JDK.
An early access release of JavaHelp soft-
ware will be available by early April. At
that time, developers can evaluate and
use the JavaHelp software, with the
caveat that authoring support will not be
available at that time. The JavaHelp soft-
ware is scheduled to ship this summer.
Redistribution of the JavaHelp binaries
will be permitted, royalty free with your
product.

For more information about the Java-
Help software, visit the Web site at
http://java.sun.com/products/javahelp.

About the Author
Nancy K. Lee is Product Manager for JavaHelp
within JavaSoft, a division of Sun Microsystems, Inc.
Since joining Sun in 1995, she has also worked in
the JavaBeans™ product marketing group and
helped found the Java Developer Connection
program.

ANYTHING NEW UNDER THE SUN

JavaHelp™ Software
New API for Developing Online

Help from Sun Microsystems
by Nancy Lee

39VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

40 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

The huge task of creating
that great Java applica-
tion is finally over.
Although the product is
“user friendly” when up

and running, installation
has typically been very

cumbersome and time con-
suming. A product that is easy for the lay-
man to install will surely outsell one that
isn’t.

You must now go back to work. What’s
needed is a development tool that not only
enables applications to be installed easily
for the end-user, but is quick and easy for
the developer to use as well. What’s needed
is InstallAnywhere from Zero G Software,
Inc. InstallAnywhere enables the creation of
a single, universal installer that will operate
on any Java-enabled platform. This
includes Windows, UNIX and Mac OS. IA tai-
lors itself to the user’s system, saving the
time and expense of building separate
installers for each platform.

Installing IA was an absolute breeze.
Anyone who can install basic software off a
CD can have IA up and running in a matter
of minutes. If you’re like me, typing code at
a command line all day will start to drive
you batty. Here lies another wonderful fea-
ture: IA runs entirely in a GUI interface.

When I first opened IA, I was given two
choices; an “open existing” option which
allowed me to continue working on a previ-
ous installer, or a “new” option, which
asked me to name the new installer. Upon
clicking new, a “quick start” feature greeted
me. It then walked me through a seven-step
shortcut which made building my installer
remarkably easy. The seven steps I had to
follow were:
1. Select the “Add files/folders” button
2. Select and add the files to install
3. Select the main class
4. Create a launch Anywhere executable

(for Java applications)
5. Switch to the build task (for Java applica-

tions)

6. Press the “build installer” button
7. Run my installer

If a simple installer is required, I’ve found
it! I came away amazed at just how easy it is
to use this product. If your application
requires more complex interactions, fear
not. Although the seven-step method can’t
be used for more complex installations, life
will still be much easier using IA.

When I bypassed the “quick start” fea-
ture, I thought I was looking at a nicely laid
out Web page rather than a powerful appli-
cation builder. On the left side of the screen,
there are seven tasks from top to bottom.
When a task is clicked on, a center work
field is filled with the various tools pertain-
ing to that task. Let’s take a look at each
task, and what’s involved with each one.

Files
This task displays all the files and direc-

tories that will be installed. It is broken
down into three panes:
• File “Hierarchy” and assignment to “Bun-

dles” on the top of the screen. This dis-
plays all files and folders that are part of
the project. The icons on each file or fold-
er indicate what item will be installed or
what action will be taken during the
installation process.

• At the bottom left of the pane is the
“Install File/Folder Action Customizer”.
This allows adjustment of how the file,
folder or archive will be installed.

• Rules List and Customizer: This allows
the developer to assign or design cus-

Build custom installers for all
of your Java applications

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
InstallAnywhere
Zero G Software
118 King St. #415
San Francisco, CA 94107
Phone: 415-512-7771
Fax: 415-512-7775
Web: www.ZeroG.com
Email: info@ZeroG.com
Requirements: IA runs on any Java 1.1-enabled
platform
Price: Express Edition: $495, Standard
Edition:$995, Commercial Edition: $3995

InstallAnywhere
by Zero G Software

PRODUCT REVIEW

by Ed Zebrowski

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

Figure 1: InstallAnywhere’s Project Wizard walks the user through the basics of building
an installer, even automating tasks like setting your application’s classpath.

41VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

42 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

tom “rules” or a set of conditions that
must be met for an item to be installed.

Bundles
This task shows the “Bundles” (func-

tional groups of files) in the installer, along
with the “Install sets” each bundle is
assigned to. This task also has three panes:
• The Bundles “Hierarchy” and assignment

to “Install Sets.” These are used mostly
for custom installations so the end-user
can choose which groups of files to
install.

• The Bundle Customizer: Shown in the
lower left pane, this allows adjustment of
various bundle settings.

• Rules List and Customizer: Allows the
same assignment of rules to bundles as
to files, as described in the previous
section.

Install Sets
This task shows the groupings of bun-

dles that comprise the entire installation in
your installer. It also has three panes:
• Install sets list: Shows every install set in

your installer. Allows settings for typical
and minimal installations, as well as full
adjustments to set the defaults for an
installation.

• Install Set Customizer: This setting allows
the customizing of four install set set-
tings. Name and Short Name assign a
name and abbreviated name to identify
your install set. Description provides
descriptive help about an install set.

• The Button section identifies the icon dis-
played inside each install set. A GIF or
JPEG that is 32x32 pixels can be used.

• Rules List and Rules Customizer: Allows
you to assign criteria (rules) to any install
set.

Installer
This task allows you to specify five

options about the installer being designed:

• The Operation menu allows you to modi-
fy certain basic settings in each installer.

• The Rules menu assigns criteria that
must be met for the installation to run.

• The Appearance menu allows the assign-
ment of a name and appearance of your
installer.

• The Steps menu assigns the steps to
include in the end-users installation
process. One option here allows you to
choose to install a Java Virtual Machine
specifically for the application being
installed or to use an existing JVM.

• The Billboards menu allows you to speci-
fy which billboards will be shown and
what order they will appear in. Billboards
will appear during end-use installation.
They may be used to highlight features of
the application being installed, or they
may provide a set of tips and reminders
to the end user. I found this to be a handy
feature.

Plug-ins
This task brings up the interface for the

IA plug-ins you may be using. Zero G tells us
that there are a number of plug-ins under
development, including a multi-language kit.

Build
The Build task allows the specification

of what types of installers you want to build
and which platforms you want your
installer to run on. One of the specifications
of this task is the “Delivery” option, which
specifies which type of installation you
want to build. IA supports two types of
installations:
• CDROM/File server: This creates a folder

for each specified platform. Inside each
folder is a double-clickable “LaunchAny-
where,” an executable that will run the
Java installer. Use this type of delivery to
build an installer that will be executed
from a CD-ROM or a floppy disk. The fold-
er structure is written out to any ISO

9660-compatable CD-ROM drive.
• Web downloads: This creates a clickable

self-extractor for each platform. These
contain a copy of the installation with the
correct VM for the platform. They can be
placed on a server for download.

View Java
This task will generate Java code for the

installer you have just built. By looking at
this, you can see how objects are created
and get a good picture of how your
installer will work. This is a good feature
for the true Java-heads who are just not
comfortable unless they can look directly
at their source code. The code faithful will
be disappointed to learn that the code
must be edited outside of IA. Files to be
edited must be copied and then opened in
an external development environment. The
InstallAnywhere Standard Edition, it
should be noted, does not support the
addition of code outside of the existing IA
objects. You would have to move up to
InstallAnywhere Commercial Edition, an
additional $3000.00 cost, to have this fea-
ture. For the extra three grand, you get
detailed developer and API documenta-
tion and sample code and can use Jav-
aBeans.

Conclusion
The job of the software developer is to

develop products that are easy for the cus-
tomer to install and use. In today’s “we need
it yesterday” world, it’s good to know that a
tool is available that allows quick and easy
development of reliable custom installers.
Give InstallAnywhere a try. It could help
make your task just a bit easier.

About the Author
Edward Zebrowski is a technical writer based in the
Orlando, FL area. Ed runs his own Web development
company, ZebraWeb, and can be reached on the
Net at zebra@rock-n-roll.com

Figure 2: IA looks more like an Web page than a powerful builder! Figure 3

43VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

44 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

It is not easy to query the contents of a
database without proprietary front end
tools or a database-aware IDE. A database-
aware toolkit should be able to connect to
and work with a variety of databases (local
and remote, application and corporate)
without a shift in how we view the contents
of different databases.

Java and JDBC allow the builder to
abstract the viewing of the data from the
implementation of the database and data-
base queries that yield the data for viewing.
A number of IDEs allow the builder to query
the contents of a database as part of the
database component integration , but using
an IDE is an expensive option for someone
who would like a simple tool for viewing
and maintaining data in different databases.

This article presents a simple database
browser that allows access to any database
that supplies either an ODBC or JDBC dri-
ver, and acts as a simple but useful inter-
face to the JDBC API. The browser can list
the various types of table as well as the
tables and table columns, and maintain
data in those tables via SQL, which is
entered free-form.

Most of this article addresses the design
and build of the browser. The aim is to pro-

duce a complete tool written in 100% Java
1.1 (AWT and JDBC) with no third party
add-ons, and which is scalable enough to
allow a new presentation layer to be bolted
on. It is also reasonable to expect browser
components to behave as middleware com-
ponents on a multi-tier platform so that the
browser can be imported as a Java Bean™
into any Bean-complaint IDE. This will allow
the ‘Data Browser Bean’ to interact with
GUI and non-GUI components in a more
ambitious distribution of functionality on a
broader corporate platform. Although the
browser does not implement the Bean
interface, this is a small task for those inter-
ested in pursuing this extension.

Functionality
Essentially, the browser is a front end to

the JDBC API. Based on practical require-
ments, the current version interfaces to a
subset of the more important JDBC meth-
ods. The current user interface implements
a set of three tabs using the Java CardLay-
out class:
• Query capture and display
• Table and column listing
• Connection detail

The user clicks on a
button and the relevant
tab detail is displayed.
Query Capture and Display

The user enters an SQL query which is
sent to the database for execution. The
query can be any SQL which the
JDBC/ODBC driver and database supports;
for example, select, insert, update, delete.
The user can limit the number of rows dis-
played from a query.

Figure 1 shows a query entered into the
query window; when the ‘Go’ button is
clicked, the query is executed and the
results displayed in the Panel above. The
user can limit the number of rows returned
from the ResultSet by entering a value in
the ‘Row Count’ text box.

Note that the projection name (i.e., the
name defined in the query), not the table
column name, is displayed. If no projection

by Graham Harrison

JDJ FEATURE

Implement functional requirements

by extending the core classes

Browsing the
JDBC API

45VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

name were nominated, the table column
name would be displayed.

Queries that are not select statements
(e.g., Update, Insert) will return an update
count, and a confirmatory message is
appended to the panel display. Figure 2
shows the update message when the
update query is executed.
Table and Column Listing

The user can select a qualified list of
tables, including Catalogs, Schema and
Table Types. From a list of tables, select the
column detail for a specific table. Various

types of tables
can be displayed;

the column detail is the
complete column specifica-

tion returned by the JDBC API.
Connection Detail

The user can select the driver and data-
base URL to connect with. The default is
the JDBC/ODBC bridge supplied in JDK 1.1,
and the jdbc:odbc protocol. Any valid dri-
ver can be entered and the database URL
can be remote.The user can display impor-
tant meta data information about the data-
base connection and driver information.

JDBC Drivers and the JDBC/ODBC
Bridge

The browser will accept the class name
of any JDBC driver you have, but defaults to
sun.jdbc.odbc.JdbcOdbcDriver, which is
the JDBC/ODBC bridge supplied with JDK
1.1.

JDBC/Net drivers
enable a connection
from the client, thru a
JDBC driver, to a
comms server which
then connects to a
database server on a
remote host. This is
required when the
JDBC driver does not
inherently support the
protocol required
between the client and
the server directly.
The local comms serv-
er will handle the pro-
tocol of database requests and, in some
cases, will make transparent the different
versions of products on multiple platforms.
Generally, a name service is provided on all
cooperating hosts to direct the clients to
host ports where the service is listening.
For example, you could use JDBC to con-
nect to an Ingres/NET comms server, which
then establishes a connection to a remote
comms server, which in turn connects to
the remote database server, and a virtual
circuit is then established. In the process,
the local and remote name servers are
queried to find the host/port addresses of
the cooperating services.

JDBC drivers can also handle the com-
munication protocol directly. In this case,
the JDBC driver connects directly to the
database server, local or remote.

For those data sources that do not have a
JDBC driver, the JDBC/ODBC bridge allows
an ODBC data source to be interrogated by
the JDBC API. The bridge software converts
the JDBC calls into ODBC calls.

The Database class in the Database
Browser handles the database connection.
The User Interface passes an instruction to
the database via the protocol handler. The
connectDB method
uses the instruction
operands as arguments
to the JDBC API.

To use the ODBC
data sources, you need
to create a new System
DSN from the Windows
Control Panel. The
name you assign to the
database is the name
you enter into the
Database URL field in
the Connection Tab.
For example, the
screenshots use the
NorthWestTrade name,
which maps down to
the nwind.mdb Access
database provided by
Microsoft.

The driver is loaded using the class.for-
name() method call. The getConnection()
method call establishes a link to the data-
base through the loaded driver. Once a link
is created, a Statement object is created
which is the handle for executing queries as
in Listing 1.

Components (Interfaces and Classes)
The various components of the data

browser are shown in Figure 5 and summa-
rized in Tables 1 and 2.

Design and Build
To support a component approach, the

design of the browser has the following
design constraints which are explained in
more detail in the following section.
• Separation of presentation layer from

database layer
• Use of interfaces to support component

integration
• Implementation of Observer/Observable

from a model/view design pattern
• Protocol handling with the use of a proto-

col client and server
• Tight coupling of component to event

using anonymous classes

Interfaces Comments
DBProtocol Specifies protocol operators and operand offsets.

Classes which implement this interface are shar-
ing protocol constants.

DBConstants Specifies application constants. Classes which
implement this interface are sharing application
wide constants.

DBHandle Allows one component to refer to another. Class-
es which implement this interface are implement-
ing a reference to the database object.

LogComponent Allows one component to write to another. A
class that implements this method must supply
the code to write to a log device.

Classes Interfaces Comments
DataBase DBConstants Data server. Handles the JDBC

DBProtocol interface, including connection
and API

DataBrowser DBProtocol User Interface. Manages an
DBHandle interface to the protocol client
DBConstants to ask the server to execute

database requests
ProtocolClient DBProtocol Package a protocol instruction and

dispatch it to the protocol server
ProtocolServer DBProtocol Interpret a protocol instruction

and send a message to the
Database to execute the operand

ProtocolData DBProtocol Create and store protocol instructions
LogDevice LogComponent Implements the write to a log device

provided by the Data Browser. In the
example, SQLLOG is a wrapper class
for this output.

Table 2: Data Browser classes

Table 1: Data Browser interfaces

46 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

• Strict use of core Java 1.1 AWT classes,
including a CardLayout for a Tab Panel

Builders unfamiliar with anonymous
classes should find the examples here
straightforward.
Separation of Presentation Layer from
Database Layer

The user interface classes are separate
from the database classes. The user inter-
face communicates with the service class-
es (DataBase) via the protocol handler.
The database performs the requested ser-
vice and obtains a handle to two items: a
results component to display JDBC API
results and a log device to contain stan-

dard error output.
There are three ways to approach the

handling of query results from the data-
base:
a. the database returns query results as

Java properties, e.g. Vectors and arrays
b.The database class writes the results to a

device owned by the presentation layer.
c. The database class invokes a method

provided by the presentation layer.

In the actual implementation:
a. is used to store meta values from the

database in a class called ResultsInfo.
b.is used to write the API results. This

includes the results of queries and meta-

data API calls.
c. is used for standard error output; since

standard error is assumed to be a prop-
erty of the user interface, the user inter-
face must provide a class that imple-
ments the LogDevice interface.

Use of a log device that is visible to
the database class yields a number of
benefits. Exceptions can be handled and
reported within the database service
itself. If this were not the case, then
either the protocol handler or the user
interface would have to catch the excep-
tions thrown by the database. This
reduces the granularity of error handling,
leading to a lack of flexibility. Some of the
SQL Exceptions thrown are not malevo-
lent; a JDBC API method may not be sup-
ported by the ODBC driver (e.g.,
getSchemas()). In this case, we want to
continue in the database server, not
return to the client. We also want to
report this fact to standard error.
Use of Interfaces to Support Component
Integration

A small number of interfaces are used to
ensure that a design thread is followed
through in each relevant component. The
interfaces perform two functions:
• Specification of constant values so that

interacting components can share them
(interfaces DBConstants and DBProtocol)

• Allow method signatures to be specified
so that one component can invoke a
method whose detail is completed by
another component (interface LogCom-
ponent)

Implementation of Observer/Observable
from a Model/View Design Pattern

The User Interface (DataBrowser class)
is an observer of the Data (DataBase class).
On a client/server platform with multiple
client access to the data, if one client
updates the data then the other clients
may need to be informed and act accord-
ingly. This means that the user interface is
an observer of the data; the data is
‘Observable’. Although the implementation
described here does nothing with this par-
adigm, for extensibility the user interface
has been defined as an observer and the
database as observed. The Observer
‘update()’ method is a no-op method. The
Observed ‘notify()’ method is similarly a
no-op method. If the DataBase requires all
registered observers to update their state
based on a change to the database, then
the DataBase should notify() all observers;
the observers (the user interface) should
then execute the update() method. Note
that the data passed is still bound to the
protocol, so a ProtocolData is used (see
Listing 2).

Figure 1: Select customers and their order items

Figure 2: Update contact name for a supplier

47VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

ad

48 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Protocol Handling with the use of a Pro-
tocol Client and Server

Most client/server and n-tier architec-
tures implement some form of protocol
handling between the clients and the
servers (either database servers or middle-
tier application servers which communi-
cate with the persistent storage servers).
This allows the clients to abstract the oper-
ational functionality from the implementa-
tion of that functionality. On a distributed
client/server platform, a communications
server is usually required to take requests
from the client and pass them on to the
comms server on the server machine,
which then passes the request on to a data-

base server. The requests are formalized
into a protocol which consists of an instruc-
tion with data or, more formally, an opera-
tor with operands. Client components
which interact with a service on a remote
host need to understand how to package up
the instructions, or protocol data, into a
suitable form.

The data browser uses a ‘protocol
client’ class to package up a protocol
instruction into a ‘protocol data’ class
which then forwards this instruction to the
‘protocol server’ class to interpret, the
interpretation being a call to a DataBase
method to execute a JDBC method call.

What seems like overengineering a sim-

ple procedure yields dividends when a host
implements a different service. The client
will then require access to a different pro-
tocol client to connect to this service, the
simple cost being the implementation of a
new protocol interface to parameterize new
service instructions instead of hardcoding
the service calls manually.

The ProtocolClient class contains a
method to package up operand values and
send a protocol instruction to the protocol
server. The example in Listing 3 takes the
query entered by the user, and the row limit,
as operands, and sends an execute query
instruction to the ProtocolServer object.

The ProtocolServer class in Listing 4
contains a method that unpacks these
operands and executes the instruction
opcode. The object passed between the
protocol client and server is an instance of
ProtocolData class. Listing 5 shows the Pro-
tocolData class handling all the
operand/operator capture.

The ProtocolData object is a Singleton
object; i.e., one instance of the class is cre-
ated, regardless of how many times the con-
structor is called:

private static ProtocolData pd;
public ProtocolData() {

if (pd == null) {
pd = this;

}
}

The ProtocolClient and ProtocolServer
classes are never instantiated; the relevant
variables and methods are declared as stat-
ic so they are referenced at class level.
There is no need to instantiate them.

A distributed, multi-tier treatment of the
protocol handling would use RMI, in which
the call to the serviceDBRequest() methods
is an RMI call. Without RMI, the ProtocolData
object must be serializable, with the protocol
client and server connected over sockets.
Tight Coupling of Component to Event
using Anonymous Classes

Java 1.1 introduced both event delega-
tion and anonymous classes. Event delega-
tion allows events generated from one com-
ponent – e.g. a button – to be handled by
another component. Anonymous classes
allow the event handling code to be speci-
fied when registering the event listener for
that component without the need to define
and instantiate another class, reducing
design and build complexity. The ‘Anony-
mous’ tag describes a class that has no
name; as far as the builder is concerned, it is
in-line event handling code. When the code
is compiled, a class file is generated which
contains the event handling code and the
class is named after the containing class
with a ‘$’ and a class number suffixed to it.

Figure 3: Column detail of the Products Table

Figure 4: Connection tab after the Details Button is clicked

49VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

50 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ADVERTISER INDEXADVERTISER INDEX
3D Graphics 27
www.threedgraphics.com 310 553-3313

Activerse 21
www.activerse.com 512 708-1255

Bristol Technology 63
www.bristol.com 203 438-6969

DCI 68, 69
www.DCIexpo.com/Internet 508 470-3880

Greenbrier & Russel 19
www.gr.com/java 800 453-0347

Imperial 77
www.Imperial.com 415 688-0200

Installshield 31
www.installshield.com 800 250-2191

Intuitive 50
www.intuitivesystems.com 408 245-8540

JavaWorld 83
www.javaworld.com 415 267-4527

KL Group Inc. 84
www.klg.com 800 663-4723

McGraw-Hill 41
www.mcgrawhill.com 800 227-0900

Marimba 63
www.marimba.com/download 415 328-JAVA

Advertiser Page
Mecklermedia 81
www.iworld.com 800 500-1959

MindQ 35
www.mindq.com 800 847-0904

Net-Developer ’98 59
www.net-developer.com 612 368-7227

Net Guru 67
www.ngt.com 800 know.ngt

Net Guru 77
www.ngt.com 800 know.ngt

Object Matter 56
www.objectmatter.com 305 718-9109

Petronio Technology Group 33
www.petronio.com 781 7788-2000

Phaos 23
www.Phaos.com 212 229-1450

PreEmptive Solutions, Inc. 25
www.preemptive.com 216 732-5895

Progress Software 29
www.progress.com 617 280-4000

ProtoView 19
www.protoview.com 609 655-5000

Sales Vision 15
www.salesvision.com 704 567-9111

SofTech Computer Systems 33
www.scscompany.com 814 696-3715

Software Development West 57
www.sd98.com 800 411-8826

Stingray Software Inc. 2
www.stingsoft.com 800 924-4223

SunTest 67
www.suntest.com 415 336-2005

SuperCede 6
www.asymetrix.com 800 448-6543

Sybex Books 37
www.sybex.com 510 523-8233

Symantec 3
cafe.symantec.com 800 453-1059 ext. 9NE5

SYS-CON Publications 61
www.sys.con.com 914 735-1900

Thought, Inc. 29
www.thought.com 415 836-9199

Waite Group Press 43
www.waite.com 800 368-9369

Zero G. Software 54
www.zerog.com 415 512-7771

1/4 Ad1/4 Ad

Advertiser Page Advertiser Page

51VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

The user interface makes use of anony-
mous classes. Listing 6 shows how, when an
entry in the tableList is clicked, a request is
sent for the table columns to be displayed.
Instead of adding a class which implements
the ItemListener interface, Java will create
a class anonymously at compilation and
add it as a listener to the tableList compo-
nent when the code above is executed.

Listing 7 shows how to display the
Query Window when the Query button is
pressed.
Strict Use of Core Java 1.1 AWT Classes

Although several widget libraries exist
which support grid and tree controls, the
browser does not use any and instead uses
the core AWT components and layout man-
agers. This reduces some of the complexity
between the user interface and the protocol
handling and simplifies the design, but
makes for a less attractive interface and

more coding.
In a prototyping context, the ideal would

be to use a Bean-compliant IDE and Bean-
compliant widgets, of which there are
many. However, the design constraints dic-
tate the core functional requirement that a
user interface be placed on top of the JDBC
API. Some would argue that the user inter-
face is the most disposable part of an appli-
cation; this is true if the parts are built
quickly and cheaply.

Evaluation of GUI components is outside
the scope of this exercise, so a decision was
made to use the core AWT components,
using a CardLayout to implement a form of
tabbed panelling. Good use is made of the
CardLayout component, which implements
tab-like functionality. Here, the user clicks a
button (Query, Tables, Connect) and a dif-
ferent card, or ‘Tab’, is displayed. The con-
tents of the tab persist between displays so

that, for example, the list of tables is still
displayed when entering and returning
from the Query tab.

When the user clicks one of the central
buttons, the relevant tab is displayed as fol-
lows (using an anonymous class):

connectButton.addActionListener(
new ActionListener() {

public void actionPerformed(
ActionEvent e){

tabOptions.show(
panel4,
connectButton.get-

Label());
}});

Panel panel4 is a panel that has been
added to the tabOptions CardLayout com-
ponent and has a tag that is equivalent to
the text of the button which fires the action
event. The Connect tab is shown when the
application starts up by setting the default
display property as follows:

tabOptions.first(panel4);
tabOptions.show(panel4, connectButton.getLa-
bel());

Extensions and Conclusion
The Data Browser allows us to view the

JDBC API in a highly flexible way without
compromising portability. With the source
code provided, this article will enable you
to use and extend the browser, learn how to
work with layout managers to achieve a rea-
sonably sophisticated effect without third
party widget class calls and, centrally, learn
how to connect to a database and use JDBC
method calls.

Clearly, not all of the API has been imple-
mented; interested readers can include
extra method calls using popup menus
against different menu options; e.g. metada-
ta, statements, connection details, etc. It is
a moderately simple task to hook another
user interface to the protocol and database
classes.

One enhancement would be to attach a

Protocol Client Protocol Server

Data ServerData Browser

Protocol Data

SQL Log

Log Device

Java Virtual Machine

Command Instruction

Query Results

Command
Request

Command
Dispatch

Error OutputDisplay

Figure 5: Cooperating Data Browser Objects

Listing 1: Connect to Database using Protocol Operands
// Connect to database
public void connectDB (String [] operand)

throws Exception {
if (operand[DBP_DRIVER_ARG] != null) {

class.forName(operand[DBP_DRIVER_ARG]);
}
if (operand[DBP_USERID_ARG] == null) {

session =
DriverManager.getConnection(

operand[DBP_URL_ARG]);
}
else {

session =
DriverManager.getConnection(

operand[DBP_URL_ARG],
operand[DBP_USERID_ARG],
operand[DBP_PASSWORD_ARG]);

}
query = session.createStatement();

}

Listing 2: The User Interface is notified of Observable
change with a ProtocolData Object.
class DataBrowser

extends Frame
implements DBProtocol,

52 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

grid component to the user interface. There
are several excellent grid components
available for 1.0 and 1.1 Java; Swing grids
are available for 1.2.

The next enhancement would be to gen-
erate screens dynamically based on the
columns of tables that we want to update.
For example, we may select a database and
a table, then nominate columns for a form
that would be used to qualify queries for
insert, update and delete queries. Remem-
ber that the browser is not tied to one data-
base design so the forms must be created
dynamically.

Network distribution of components can
be achieved with little modification to the
code through an RMI implementation, with
the User Interface and Protocol Client on
one host and the Protocol Server and Data-
Base on another host. All four components
could be on four different hosts. One draw-
back in multi-tier hosting of service objects
is the serialization and network transport

of marshalled objects. Java 1.1 introduces
object serialization; it is very easy to imple-
ment this feature without using RMI. Essen-
tially, the ProtocolData instance is serial-
ized and passed over a TCP/IP socket con-
nection to a listening protocol server. Since
both client and server are Java, you can use
RMI, which implements serialization under-
neath the RMI protocol.

For an implementation where many
clients require access to the database, the
main requirement is that the Database
class makes all methods 'synchronized' so
that there is no contention when updating
or inserting data. Where many clients
require the protocol handler to perform a
service, the ProtocolData object must not
be a Singleton object, but be instantiated
for every client that requires a protocol
instruction to be formatted. The Protocol-
Client and ProtocolServer classes would
need some adjustment to enable the
client/database handles to retain their

identity for each client. For example, the
ProtocolClient could be instantiated for
every user interface connection, the vari-
able data being a reference to the main UI
object (the methods remain static); alter-
natively, a static array could contain a list
of references to controlling user-interface
objects.

In summary, when we relocate cooperat-
ing objects from the same virtual machine,
we need to implement RMI or sockets while
retaining the component functionality.
Most functional requirements you explore
can be implemented by extending the core
classes in this way.

About the Author
Graham Harrison is a Senior Consultant with
Informix Software and a Sun Certified Java Program-
mer. He can be contacted at gpharrison@com-
puserve.com

DBConstants,
DBHandle,
ItemListener,
Observer {

…

public void update(Observable o,
Object p) {

if !(p instanceof ProtocolData)){
System.out.println("Error in

Observers.");
System.exit(1);

}
// do something as directed by
// observable object with detail
// in the protocol, e.g. requery

}}

Listing 3: The Protocol Client creates a Protocol Instruction.
public static void tellProtocolClient(byte opcode)

throws Exception {
ProtocolData protocolData =

ProtocolData.getProtocolData();
protocolData.setOpcode(opcode);
try {

switch (opcode) {
case DBP_EXECUTE_QUERY: {

// the TextArea is the operand value
protocolData.setOperand(

ui.queryWindow.getText(),
DBP_SQLTEXT_ARG);

protocolData.setOperand(
ui.rowCount.getText(),
DBP_ROWCOUNT_ARG);

ProtocolServer.serviceDBRequest(
protocolData);

break;
}
…
}

Listing 4: Protocol Server Instruction Handling.
// protocol handler

public static Object serviceDBRequest(ProtocolData p)
throws Exception {

switch (p.getOpcode()) {
case DBP_EXECUTE_QUERY: {

db.execSQL(
p.getOperand(DBP_SQLTEXT_ARG),
p.getOperand(DBP_ROWCOUNT_ARG));

return db.getResults();
}

…
}

Listing 5: ProtocolData Class Operand Capture
public void setOpcode(int opcode) {

this.opcode = opcode;
}
public void setOperand(String operand, int index) {

this.operand[index] = operand;
}

Listing 6: Anonymous Class Example One
tableList.addItemListener(

new ItemListener() {
public void itemStateChanged(

ItemEvent e) {
Integer index = (Integer)e.getItem();
tableName = tableList.getItem(index.intValue());
try {

ProtocolClient.tellProtocolClient(
DBP_COLUMNS);

} catch (Exception ea) {
ea.printStackTrace();

}
} });

Listing 7: Anonymous Class Example Two.
queryButton.addActionListener(

new ActionListener() {
public void actionPerformed(

ActionEvent e){
tabOptions.show(

panel4,
queryButton.getLabel());

gpharrison@compuserve.com

53VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

54 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

What is a Callback?
A callback is a mechanism by which the

user’s action on a software application’s
graphical user interface (GUI) is connected
to the code implementing the application’s
response to this action. It is a familiar con-
cept to X Toolkit and Motif programmers. In
reality, the actual callback is the part of the
callback mechanism that implements the
application response. In this sense, a call-
back is also known as a command in object-
oriented circles. This article describes how
to implement support for a Java version of
the X Toolkit/Motif-style callback for AWT.

Advantages of Using Callbacks
There are many advantages of using call-

backs instead of standard AWT event han-
dling:
• It clearly separates the application’s GUI

code from the code implementing the
application’s response to any user inter-
action with the GUI.

• For those programming in Java 1.0, there
is no need to subclass an AWT compo-
nent to implement an action, thus pre-
venting subclass proliferation.

• For those programming in JDK 1.1, Lis-
teners instances are centralized in one
location.

• More importantly, Java version-depen-
dent code is localized in one class. Thus,
application code written using the call-
back mechanism achieves Java version
independence. In other words, an appli-
cation may be ported easily from JDK 1.0
to 1.1 without rewriting a single event
handling code.

How Callback Works
Figure 1 shows the workings of the call-

back mechanism. It shows the relationship
of the event originator, the event handler
and the callback. The event handler is the
centralized location where all AWT events

are delivered, and it decides whether any
application response code is interested in
processing this event. This is implemented
in the CallbackList class. The AWT compo-
nent is where the event originated has to be
extended or subclassed to hand off events
to the centralized event handler rather than
processing the event itself. The program-
mer supplies the application response call-
back code by extending the Callbackable
class, and registers this code with the
extended AWT component.

The Callbackable Class
Callbackable is implemented as an

abstract class to enforce a uniform struc-
ture to all callback code. The callback code
is where the programmer implements the
application’s response to an event. This is
necessary because the CallbackList
expects a specific method in a registered
callback; specifically, public abstract void
boolean activate(Event e). Information
related to the component and the event
that triggers this code can be retrieved
from the Event object that is passed as the
parameter. The actual implementation of
the Callbackable interface is very simple
and is shown in Listing 1.

The CallbackList Class
The CallbackList maintains a list of reg-

istered instances of Callbackable. This is
also where the majority of the code for han-
dling the AWT differences between Java 1.0
and 1.1 is located. In 1.0, the CallbackList is
fairly simple. It extends the Vector class
and keeps a list of registered instances of
Callbackable. In JDK 1.1, this class becomes
a little bit more complicated as it also has
to act as the Listener of all AWT compo-
nents. Listing 2 shows the complete source
code for the Java 1.0 version of Callback-
List, and Listing 3 shows the same for Java
1.1. When the programmer registers an

instance of a concrete subclass of Callback-
able, it gets added to the CallbackList. Mul-
tiple instances of Callbackable may be reg-
istered for a single AWT component in Call-
backList. When an interaction occurs with
an AWT component, the event is passed to
a specific instance of the CallbackList for
that AWT component, which goes through
its Vector of registered instances of Call-
backable and activates each one in turn.

Adding Support for Callbackable
in AWT

A user action reaches an instance of an
AWT component as an event. This event
must be passed on to the CallbackList
where it can be redirected to the appropri-
ate Callbackable. To do this, an AWT com-
ponent must be extended. Listings 4 and 5
show the extended AWT Button as an exam-
ple for Java 1.0 and 1.1 respectively, but
other AWT components can be extended
the same way. In implementing the exten-
sion to AWT Button, one has to decide what
events or compound events are important
and a CallbackList instantiated to represent
each. In this case, it will be the activate
(mouse click), arm (mouse down) and dis-
arm (mouse up) events. So, the activate-
CallbackList, armCallbackList and disarm-
CallbackList are created for it. The pro-
grammer registers an instance of a Call-
backable using the addCallback method.
AddCallback simply adds a Callbackable to
the appropriate CallbackList. Instead of
requiring the programmer to subclass But-
ton and write a new handleEvent code for
each button that was instantiated, the pro-
grammer inserts the operation code in the
subclass of Callbackable itself. This
enforces the division between GUI code and
operational code and makes the code more
reliable and reusable.

Using Callback
Listing 6 shows a sample program that

uses the “enhanced” Button class. A con-
crete subclass of Callbackable is instantiat-
ed and added to an instance of the Button
class. Note the use of a constructor and
the set methods to pass extra information
to the Callbackable. To find out which
component triggered this callback, e.tar-
get is used. A single application will suffice

Implementing Callback-Style
Support for Java’s AWT

Allow your application to better survive
any future AWT paradigm shift

EXPANDING THE AWT

by Daniel Dee

55VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

for both Java 1.0 and 1.1 because code spe-
cific to the Java version has been encapsu-
lated in the implementation of callback
support.

Conclusion
In many ways, the callback mechanism

is similar to listeners in Java 1.1, where the

actual operational code is delegated to an
instance of the Listener class. However,
with listeners, an event specific method in
an event source specific class is triggered
for each specific event. For example, a
mouse click will trigger the mouseClicked
method in MouseListener. While with call-
backs, there is only one class, Callbackable,

and only one method, activate, to remem-
ber. In addition, implementing a callback
layer over Java’s own event handling allows
one’s application to better survive any
future AWT paradigm shift.

The follow-up article to this will discuss
how to enforce uniformity in the callback-
extended AWT components by using the
Widget interface class.

Download Source Code
Source code for this article can be down-

loaded free from http://www.wigitek.com. A
fully implemented version containing
extended AWT code can also be purchased
from Wigitek Corporation at the same Web
site.

About the Author
Daniel Dee has more than 10 years of experi-

ence working in the development of GUI software
toolkits, starting with X Windows and then Java,
since their inception. He is currently the president of
Wigitek Corporation, a company providing software
tools and consulting services for the development
Java-based data-driven dynamic graphics software.
He received an MS degree in Computer System Engi-
neering from the University of Massachusetts. Daniel
can be reached at daniel@wigitek.com

Listing 1.
/**
* Copyright (c) 1997 Daniel Dee
* Description:

Package contains common classes for the ViviGraphics Widget
Toolkit - a callback-based toolkit.
Originally, part of the Eva Toolkit - the prototype
implementation.

*/
package com.wigitek.vivigraphics.widget.common;

import java.awt.Event;

/**
* This class implements the callback mechanism that is required

to support the Widget interface. You will typically subclass
this to implement your own activate method in order to perform
functions specific to events that trigger the callback.

* @version $Revision$
* @author Originally written by Daniel Dee, 3/17/97
* @author Last updated by $Author$, $Date$
*/

public abstract class Callbackable extends Object
{

/**
* Performs functions specific to the event that triggers this

callback. By default, it prints information about the acti-
vating

object when this callback was registered and the activating
event.

You should normally override this method to perform func-
tion

specific to your application.
* @param evt the event that triggers this callback

*/
public abstract boolean activate(Event e);

}

Listing 2.
/**
* Copyright (c) 1997 Daniel Dee
* Description:

Package contains common classes for the Vivigraphics Widget
Toolkit - a callback-based callback-based toolkit.
Originally, part of the Eva Toolkit - the prototype
implementation.

*/
package com.wigitek.vivigraphics.widget.gui;

import java.awt.Event;
import java.util.Vector;
import java.io.IOException;
import com.wigitek.vivigraphics.widget.common.Callbackable;

/**
* This class chains callbacks associated with a single callback

type
together.

* @version $Revision$
* @author Originally written by Daniel Dee, 3/17/97
* @author Last updated by $Author$, $Date$
*/

public class CallbackList extends Vector
{

/**
* Constructs a CallbackList. Creates a Vector with 100 ini-

tial elements
and a increment size of 100.

*/

Figure 1: How Callback Works

daniel@wigitek.com

56 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

public CallbackList()
{

super(100, 100);
}

/**
* Removes a Callbackable from the CallbackList.
* @param cb the callback
*/

public boolean remove(Callbackable cb)
{

boolean returnValue = false;

for(int i=0; i < size(); i++)
{

Callbackable _cb = (Callbackable)elementAt(i);
if(_cb == cb)
{

removeElementAt(i);
returnValue = true;

}
}
return returnValue;

}

/**
* Removes a CallbackClientPair at the indexed position.
* @param index the position of the CallbackClientPair in the

CallbackList.
*/

public boolean removeAt(int index)
{

try
{

removeElementAt(index);
return true;

}
catch(ArrayIndexOutOfBoundsException e)
{

return false;
}

}

/**
* Adds a callback to a chain.
* @param callback the callback
* @return the Callbackable
*/

public Callbackable add(Callbackable cb)
{
if(cb == null)
cb = defaultCB;

addElement(cb);
return cb;

}

/**
* Calls all the callbacks in this chain.
* @param evt the event that triggers this callbacklist
* @return true if event has been processed by the callback

and no further processing is necessary; false
if further processing from the activating object
is required.

*/
public boolean activate(Event e)
{

boolean returnValue = true;

for(int i=0; i < size(); i++)
{

Callbackable cb = (Callbackable)elementAt(i);
returnValue = cb.activate(e);

}

return returnValue;
}

private CallbackListDefaultCallbackable defaultCB =
new CallbackListDefaultCallbackable();

}

/**
* Default Callbackable.
*/

class CallbackListDefaultCallbackable extends Callbackable
{

/**
* Prints information about the activating

object.
* @param evt the event that triggers this callback
*/

public boolean activate(Event evt)
{

System.out.println("Calling object is " +
evt.target.toString() + ".");

System.out.println("Activating event is " +
evt.toString() + ".");

return true;
}

}

Don’t Type it… Download it!
Access the remainder of the
source code for this article at
JavaDevelopersJournal.com

57VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Listing 3.
/**
* Copyright (c) 1997 Daniel Dee
* Description:

Package contains common classes for the Vivigraphics Widget
Toolkit - a callback-based callback-based toolkit.
Originally, part of the Eva Toolkit - the prototype
implementation.

*/
package com.wigitek.vivigraphics.widget.gui;

import java.awt.Event;
import java.awt.AWTEvent;
import java.util.Vector;
import java.io.IOException;
import java.awt.event.*;
import com.wigitek.vivigraphics.widget.common.Callbackable;

/**
* This class chains callbacks associated with a single callback

type
together.

* @version $Revision$
* @author Originally written by Daniel Dee, 3/17/97
* @author Last updated by $Author$, $Date$
*/

public class CallbackList extends Vector
implements ActionListener,

AdjustmentListener,
ComponentListener,
ContainerListener,
FocusListener,
ItemListener,
KeyListener,
MouseListener,
MouseMotionListener,
TextListener,
WindowListener

{
/**
* Constructs a CallbackList. Creates a Vector with 100 ini-

tial elements
and a increment size of 100.

*/
public CallbackList()
{

super(100, 100);
}

/**
* This method is called when an action event occurs inside

the
source object. The corresponding callbacks added
by the user are activated.

* @param evt the event
*/

public void actionPerformed(ActionEvent evt)
{
Event e = new Event(evt.getSource(), evt.getID(), evt);

activate(e);
}

// TO BE IMPLEMENTED
public void adjustmentValueChanged(AdjustmentEvent evt) {}
public void componentResized(ComponentEvent evt) {}
public void componentMoved(ComponentEvent evt) {}
public void componentShown(ComponentEvent evt) {}
public void componentHidden(ComponentEvent evt) {}
public void componentAdded(ContainerEvent evt) {}
public void componentRemoved(ContainerEvent evt) {}

public void focusGained(FocusEvent evt) {}
public void focusLost(FocusEvent evt) {}
public void itemStateChanged(ItemEvent evt) {}
public void keyTyped(KeyEvent evt) {}
public void keyPressed(KeyEvent evt) {}
public void keyReleased(KeyEvent evt) {}
public void mouseClicked(MouseEvent evt) {}
public void mousePressed(MouseEvent evt) {}
public void mouseReleased(MouseEvent evt) {}
public void mouseEntered(MouseEvent evt) {}
public void mouseExited(MouseEvent evt) {}
public void mouseDragged(MouseEvent evt) {}
public void mouseMoved(MouseEvent evt) {}
public void textValueChanged(TextEvent evt) {}
public void windowOpened(WindowEvent evt) {}
public void windowClosing(WindowEvent evt) {}
public void windowClosed(WindowEvent evt) {}
public void windowIconified(WindowEvent evt) {}
public void windowDeiconified(WindowEvent evt) {}
public void windowActivated(WindowEvent evt) {}
public void windowDeactivated(WindowEvent evt) {}

/**
* Removes a Callbackable from the CallbackList.
* @param cb the callback
*/

public boolean remove(Callbackable cb)
{

boolean returnValue = false;

for(int i=0; i < size(); i++)
{

Callbackable _cb = (Callbackable)elementAt(i);
if(_cb == cb)
{

removeElementAt(i);
returnValue = true;

}
}
return returnValue;

}

/**
* Removes a CallbackClientPair at the indexed position.
* @param index the position of the CallbackClientPair in the

CallbackList.
*/

public boolean removeAt(int index)
{

try
{

removeElementAt(index);
return true;

}
catch(ArrayIndexOutOfBoundsException e)
{

return false;
}

}

/**
* Adds a callback to a chain.
* @param callback the callback
* @return the Callbackable
*/

public Callbackable add(Callbackable cb)
{
if(cb == null)
cb = defaultCB;

addElement(cb);

58 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

return cb;
}

/**
* Calls all the callbacks in this chain.
* @param evt the event that triggers this callbacklist
* @return true if event has been processed by the callback

and no further processing is necessary; false
if further processing from the activating object
is required.

*/
public boolean activate(Event e)
{

boolean returnValue = true;

for(int i=0; i < size(); i++)
{

Callbackable cb = (Callbackable)elementAt(i);
returnValue = cb.activate(e);

}

return returnValue;
}

private CallbackListDefaultCallbackable defaultCB =
new CallbackListDefaultCallbackable();

}

/**
* Default Callbackable.
*/

class CallbackListDefaultCallbackable extends Callbackable
{

/**
* Prints information about the activating

object.
* @param evt the event that triggers this callback
*/

public boolean activate(Event evt)
{

System.out.println("Calling object is " +
evt.target.toString() + ".");

System.out.println("Activating event is " +
evt.toString() + ".");

return true;
}

}
Listing 4.
/**
* Copyright (c) 1997 Daniel Dee
* Description:

Package contains common classes for the ViviGraphics Widget
Toolkit - a callback-based toolkit.
Originally, part of the Eva Toolkit - the prototype
implementation.

*/
package com.wigitek.vivigraphics.widget.gui;

import java.awt.Event;
import java.lang.String;
import com.wigitek.vivigraphics.widget.common.Callbackable;
import com.wigitek.vivigraphics.widget.gui.CallbackList;

/**
* This class extends the java.awt.Button class to support

the callback mechanism by implementing the Widget interface.
* @version $Revision$
* @author Originally written by Daniel Dee, 2/21/97
* @author Last updated by $Author$, $Date$
* @see Widget

*/
public class Button extends java.awt.Button
{

/**
* Constructs a Button with no label and with name "unnamed".
*/

public Button()
{

this("", "unnamed");
}

/**
* Constructs a Button with a string label and with name

"unnamed".
* @param label the specified label
*/

public Button(String label)
{

this(label, "unnamed");
}

/**
* Constructs a Button with a string label and with given

name.
* @param label the specified label
* @param name the specified name
*/

public Button(String label, String name)
{

super(label);
this.name = name;

}

/**
* Returns a String that represents the value of this Object.

Overrides the method in java.lang.Object.
* @return a String
* @see Object
*/

public String toString()
{

String string = super.toString();
int length = string.length();
return string.substring(0, length-1) + ",name=" + name

+ "]";
}

/**
* Registers a callback for the top level frame. Top level

frame
currently recognizes only ACTIVATE_CALLBACK when the par-

ticular
instance of the button is pushed. Unknown callbacks
are ignored.

* @param callbackName the type of callback to register
* @param callback the object of the Callbackable class

that will activated
when trigger by the callback type

given by callbackName
* @see Callbackable
*/

public void addCallback(String callbackName, Callbackable
callback)

{
if(callbackName.compareTo(ACTIVATE_CALLBACK) == 0)

activateCallbackList.add(callback);
}

/**
* This method is called when an action event occurs inside

59VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

this
Button. Depending on the event, the corresponding callbacks

added
by the user are activated.

* The method returns true to indicate that it has successful-
ly

handled the action; or false if the event that triggered
the action should be passed up to the component's parent.

* @param evt the event
* @return true if the event has been handled and no further

action is necessary; false if the event is to be
given to the component's parent.

*/
public boolean action(Event evt, Object arg)
{

activateCallbackList.activate(evt);
return true;

}

// Name of instance of this class.
private String name;

// Callback when button is pushed.
private CallbackList activateCallbackList = new Callback-

List();
public static final String ACTIVATE_CALLBACK = "activateCall-

back";
}

Listing 5.
/**
* Copyright (c) 1997 Daniel Dee
* Description:

Package contains common classes for the ViviGraphics Widget
Toolkit - a callback-based toolkit.
Originally, part of the Eva Toolkit - the prototype
implementation.

*/
package com.wigitek.vivigraphics.widget.gui;

import java.awt.Event;
import java.lang.String;
import com.wigitek.vivigraphics.widget.common.Callbackable;
import com.wigitek.vivigraphics.widget.gui.CallbackList;

/**
* This class extends the java.awt.Button class to support

the callback mechanism by implementing the Widget interface.
* @version $Revision$
* @author Originally written by Daniel Dee, 2/21/97
* @author Last updated by $Author$, $Date$
* @see Widget
*/

public class Button extends java.awt.Button
{

/**
* Constructs a Button with no label and with name "unnamed".
*/

public Button()
{

this("", "unnamed");
}

/**
* Constructs a Button with a string label and with name

"unnamed".
* @param label the specified label
*/

public Button(String label)
{

this(label, "unnamed");
}

/**
* Constructs a Button with a string label and with given

name.
* @param label the specified label
* @param name the specified name
*/

public Button(String label, String name)
{

super(label);
this.name = name;
addActionListener(activateCallbackList);

}

/**
* Returns a String that represents the value of this Object.

Overrides the method in java.lang.Object.
* @return a String
* @see Object
*/

public String toString()
{

String string = super.toString();
int length = string.length();
return string.substring(0, length-1) + ",name=" + name

+ "]";
}

/**
* Registers a callback for the top level frame. Top level

frame
currently recognizes only ACTIVATE_CALLBACK when the par-

ticular
instance of the button is pushed. Unknown callbacks
are ignored.

* @param callbackName the type of callback to register
* @param callback the object of the Callbackable class

that will be activated
when triggered by the callback type given by callbackName

* @see Callbackable
*/

public void addCallback(String callbackName, Callbackable
callback)

{
if(callbackName.compareTo(ACTIVATE_CALLBACK) == 0)

activateCallbackList.add(callback);
}

// Name of instance of this class.
private String name;

// Callback when button is pushed.
private CallbackList activateCallbackList = new Callback-

List();
public static final String ACTIVATE_CALLBACK = "activateCall-

back";
}

Listing 6
import java.awt.Frame;
import com.wigitek.vivigraphics.widget.common.*;
import com.wigitek.vivigraphics.widget.gui.*;

public class ButtonTest extends Frame
{
public ButtonTest(String title)
{
super(title);

60 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Hello and welcome to Java’s Karma – The
Cosmic Cup. The word Karma originates
from Hinduism and means fate or destiny;
or the cosmic principle according to which
each person is rewarded or punished in one
incarnation according to that person’s
deeds in a previous incarnation. In this col-
umn, we will examine Java’s Karma – Java in
its rapid incarnations; new and upcoming
Java technologies that are going to deter-
mine Java’s role in the computing world.

Indeed, Java has already moved beyond
the realm of a programming language and
holds the promise of uniting enterprise
computing under one large umbrella. We
will examine and explore new APIs, learn
how to apply existing ones and develop
example applications that illustrate how
various technologies play together. I would
like this column to evolve based on feed-
back from the readers. If you would like to
see coverage on a particular topic, more
information on another, or have any sug-
gestions regarding the general theme of the
column, please let me know and I will try to
address your requests in future articles.

This month we will examine the role of
Java in business computing, or the Enter-
prise. Java has, as promised, extended
beyond just a programming language to a
platform for distributed computing that
holds the promise of solving a myriad of
business problems.

When Java first made its public appear-
ance, it was associated with a group of
eleven buzzwords – simple, object-oriented,
distributed, robust, secure, architecture neu-
tral, portable, interpreted, high performance,
multithreaded and dynamic. Of these, sim-
ple, object-oriented, portable, interpreted
and multithreaded define the nature of the
Java programming language. The Java Plat-
form for the Enterprise attempts to make

“distributed, robust, secure, architecture neu-
tral, and portable” a reality. High perfor-
mance is an aspect that will ultimately
determine the feasibility of using Java in
various applications.

The following sections discuss the APIs
that attempt to fulfill the promise of a “Java
Enterprise Platform.” First, the Java APIs
that constitute Enterprise Java are identi-
fied. This is followed by brief descriptions
of these APIs and discussions of their role
in the enterprise. (Note: I use “Java Plat-
form” and “Enterprise APIs” inter-
changably. All references here to either

term should be interpreted as references to
the Java Enterprise APIs.

The Java Platform for the
Enterprise

So, is Java a language or a platform?
Well, Java made its public debut as a lan-
guage for the Internet that could be used to
develop cool, interactive Web pages. But it
has always been more than just another
programming language. The language itself
provided the core APIs in different fields of
computing such as networking, graphics,
etc. But it also was structured for expan-
sion and provided hooks for plugging in
enhancements and other related technolo-
gies in the fields of networking, graphics,

telephony, messaging, databases, etc.,
which would plug and play together to
solve computing problems in the business
world. Many of these technologies have
matured over the last couple of years and
are instrumental in defining the role of Java
as a platform for distributed computing.

The Java Platform for the Enterprise is a
framework that will be used in developing
applications for enterprise computing. In
today’s Internet era, that inherently implies
support for a distributed architecture. The
Java Platform consists of a group of Java
core and extension APIs (i.e., not a part of
the standard JDK) supplied by Sun
Microsystems, Inc., that support this archi-
tecture. These may be categorized as:
1. Enterprise JavaBeans™ (EJB) and relat-

ed APIs: Suite of APIs that provides
extensions to existing applications and
enable a separation between the business
logic of a computing solution and the
core infrastructure

2. Connectivity APIs: Suite of APIs that pro-
vides connectivity between core Java
applications/applets and other frame-
works in distributed computing

3. Enterprise Services APIs: Suite of APIs
that provides computing services used to
develop enterprise applications
There are other Java extension APIs that

are not directly a part of the Java Platform
but instead support the Platform APIs for
development of enterprise applications.

The Java Enterprise APIs and their roles
are illustrated in Table 1.

The Java Enterprise APIs
The following sections provide a very

brief introduction to the Java Enterprise
APIs. For the APIs still in their preliminary
stages, an overview of the modules they
support is provided.

Figure 1 shows how the Enterprise APIs
form the architecture of the Java Platform
for the Enterprise. The Connectivity APIs
and the Enterprise Services are used to
build and support the core reusable com-
ponents of the Java Platform – Enterprise
JavaBeans. EJBs may be used directly for
the development of business applications.

Enterprise JavaBeans
EJB is the core API for the Java Platform.

The Cosmic Cup

Java for the
Enterprise

New technology that will determine
Java’s role in the computing world

by Ajit Sagar

http://www.JavaDevelopersJournal.com 61Java DEVELOPER’S JournalVOLUME 3 ISSUE 4 •

It defines a server component model for
building multi-tier distributed applications
by combining Java components developed
by different enterprise vendors. EJB com-
ponent development uses all the other APIs
in the Java Platform.

The EJB API has recently been released
as a draft specification for public review
version 0.9. Discussion of the API will be
covered in a future article.

EJB architecture defines five roles in the
application development and deployment
workflow. These roles are described here:
• Enterprise Beans Provider: An applica-

tions domain expert who develops
reusable EJBs, each of which implements
some business logic

• Application Assembler: A domain expert
who creates applications out of EJBs

• Deployer: An expert at a specific opera-
tional environment who is responsible for
the deployment of EJBs and their con-
tainers

• EJB Container Provider: A system-level
programmer who develops a scalable,
secure, transaction-enabled system

• EJB Server Provider: A specialist in the
area of distributed transaction manage-
ment, distributed object and system-level
services who publishes low-level inter-
faces to allow third parties to develop
containers

Java DataBase Connectivity
JDBC is the database connectivity pack-

age now included in the core Java API. The
API consists of objects used by an applica-
tion to communicate with the DBMS. In the
API, there are four main interfaces, based
on relational database concepts:
• DriverManager: Enables applications/

applets to download database drivers via
a URL and causes establishment of a con-
nection to the database

• Connection: Represents the connection
to the database obtained via a getCon-
nection() method of the DriverManager
class

• Statement: Represents a SQL query state-
ment passed to the database

• ResultSet: Represents rows of data
returned from the execution of a query
against the database

JDBC enables applications to connect to
what is usually the nth tier in an n-tier archi-
tecture; i.e., the data source. It enables Java
to be database-independent by accessing
the databases via Pure Java JDBC drivers.

Remote Method Invocation
The Java RMI package is also part of the

core Java API. It provides a mechanism for
interaction between distributed Java
objects that are similar to CORBA’s IIOP. In

addition, it uses Java’s serialization inter-
face to allow transfer of object instances
between remote objects. RMI provides the
ability for Java objects to execute methods
on objects on remote Java objects and get
back results from the method call. There
are three main interfaces in the API:
• Remote: A marker (empty) interface that

all remote interfaces must extend
• UnicastRemoteObject: Acts as a base

class for server implementations in RMI
• RemoteException: Acts as a base class

for many of the exceptions thrown by
RMI remote method calls.

Using RMI involves writing a remote
object and then writing its server implemen-

tation. An Object Registry runs on the serv-
er to help locate the server implementation
of the remote object. RMI helps define the
middle-tier in a distributed Java application.

Some extensions to RMI address reverse
mapping; i.e., from the Java language to
CORBA IDL.

Java Interface Definition Language
Java IDL is a Java API that allows devel-

opment of multi-tier distributed applica-
tions by leveraging the standards defined
by CORBA. It provides a Java mapping to
CORBA and complies with the OMG stan-
dard for the CORBA 2.0 IIOP standard. This
allows Java IDL programs to be used with
CORBA 2.0-compliant ORBs (Object

The Java Platform APIs

Core Component APIs
API Full Name Role
EJB Enterprise JavaBeans Provides access to a core set of system services for

Framework developing enterprise-level multi-tier application
systems for high-volume business transactions

Connectivity APIs
API Full Name Role
JDBC Java DataBase Provides connectivity to existing relational

Connectivity databases
RMI Remote Method Enables Java objects on one Virtual Machine to

Invocation invoke methods on an object running on a remote
Virtual Machine

Java IDL Java Interface Defines mechanism for interoperating
Definition Language with CORBA for programming-language

independent distributed computing

Enterprise Services
API Full Name Role
JNDI Java Naming and Will enable applications to access

Directory Interface enterprise naming and directory services --
information about users, machine information and
network and service

JMAPI Java Management API Will provide a rich set of extensible objects and
methods for the development of system, network
and service management solutions for
heterogeneous networks

JMS Java Message Service Will define standard messaging services for
enterprise messaging systems to interoperate

JTS Java Transaction Service Will provide enterprise components the ability to
interface with a variety of transaction processing
infrastructures

Supporting APIs
JNI Java Native Interface A standard programming interface for writing Java

native methods and embedding JVM into native
applications

Servlet Java Servlet API Allows server-side Java programs to run with any
API major Web server and thus supports the

middleware layers of the enterprise.

Table 1: The Java Enterprise APIs

62 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Request Brokers) across TCP/IP networks.
For CORBA programmers, Java provides

an OMG-compliant reference implementa-
tion of an ORB. It provides the Java lan-
guage mapping for the CORBA IDL.

In contrast to RMI, Java IDL enables
communication between heterogeneous
objects; i.e., between objects implemented
in Java and other languages like C/C++,
Smalltalk, etc.

Java Naming and Directory Interface
The JNDI API provides a unified inter-

face to multiple naming and directory
enterprise services. It is designed to be
independent of any specific directory
implementation and based on access to
LDAP, NDS, NIS, DNS, etc. Standard services
like name/address lookup, searches and fil-
ters are provided by the API. The main
interfaces of the JNDI API are:
• Context: Core interface that specifies the

naming context; operations such as
adding/removing a name to the object-
binding, looking up a name, etc.

• DirContext: Defines methods for examin-
ing and updating attributes associated
with a directory object; also capable of
providing a naming context and support-
ing searches

• Service Provider Interface (SPI): Pro-
vides the means by which different nam-
ing/directory service providers (SPs) can
develop and hook up their directory
implementations

The JNDI API specification is an exten-
sion API to the core JDK.

Java Management API
The JMAPI provides the user interface

guidelines, Java classes and specifications
for developing integrated system, network
and management applications that can be
used across different operating systems,
architectures and network protocols. It
consists of the following:
• JMAPI Style Guide: Provides guidelines

for developing Web-based user interface
in Java

• Admin View Module (AVM): An exten-
sion of the AWT that is specially designed
for developing UI for distributed manage-
ment applications

• The Base Object Interfaces: Supports
constructing objects that represent dis-
tributed resources and services compris-
ing the enterprise computing environ-
ment

• Managed Container Interfaces: Allows
management applications to perform
actions on a single group of managed
objects, instead of each instance

• Managed Notification Interfaces: Pro-
vides the basic foundation from which
more complex event management ser-
vices can be built easily

• Managed Data Interfaces: Supports map-
ping classes and instances of the Base
Objects to a relational database

• Managed Protocol Interfaces: Provides
the infrastructure to perform distributed
operations securely

• SNMP Interfaces: Allows extensions of
the Base Objects to contain information
obtained from existing SNMP agents

• Applet Integration Interfaces: Allow soft-
ware developers to integrate their Java
applets into the JavaManagement API

Java Transaction Service
The JTS is a low-level API used by

sophisticated transactional application
programs, resource managers, transaction
processing monitors, transaction-aware
communication managers and transaction
managers. JTS’s role is to ensure their inter-
operability in the Java environment. JTS is
compatible with the Object Management
Group’s Transaction Service (OTS) specifi-
cation. JTS extends the OTS specification in
two areas: It incorporates the Synchroniza-
tion interface defined in the in-progress
draft of the upcoming revision of OTS, and
it specifies how a transaction context can
be propagated through other communica-
tion protocols.

JTS version 0.5 is open to public review.

Java Message Service
JMS is still in the pre-API stage. It will

provide a standard for message-based
enterprise communication such as:
• Publish/subscribe for smart communica-

tion between objects
• Reliable queuing
• Push/push technologies

Conclusion
In this article we examined the Java

Enterprise APIs and learned the role of the
Java Platform in the business industry. We
briefly examined the roles played by indi-
vidual APIs that make up the Java Platform
for the Enterprise. Detailed information on
all these APIs may be obtained from Sun’s
Java Website, java.sun.com/products.

So far we have browsed over the pieces
that make up the Java Enterprise APIs. The
larger part of this technology is still in the
rudimentary stages and is continually
evolving. In some of the forthcoming
columns we will explore these APIs in detail
and explore how these parts will come
together to make the whole.

Cosmic Reflections
The Java Platform is not the first attempt

in the computing industry to define a com-
mon standard for enterprise solutions. IBM
tried to standardize the hardware via Per-
sonal Computers. Microsoft tried to limit
the software to one platform and operating
system. With the Java Platform, are we not
seeing an attempt to limit enterprise com-
puting to one “software platform?”

About the Author
Ajit Sagar is a member of the Technical Staff at i2
Technologies, Dallas, TX. He holds a B.S. in Electrical
Engineering from BITS, Pilani, India and an M.S. in
Computer Science from Mississippi State University.
Ajit focuses on UI, networking and middleware archi-
tecture development.He has 7-1/2 years of program-
ming experience and two in Java.

Figure 1: The Java Enterprise APIs

Ajit_Sagar@i2.com

63VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

1/4
Ad

64 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Data! You can’t live without it. Wherever
you go, whatever you touch, information is
continually being flashed before us. It was-
n’t so long ago that people were complain-
ing of not having enough information and
now our medical experts are telling us to
take days off due to the information over-
load some are experiencing.

However, the problem isn’t the volume of
data that we are presented with – it’s the for-
mat. We seem to spend most of our time try-
ing to sift out the useful information from the
data noise that seems to interfere with our
daily lives. It is easy to blame someone else
for this and not take the responsibility our-
selves, while in actual fact everyone has a
duty to ensure data integrity and accuracy.

This miniseries of articles looked at differ-
ent ways in which data can be manipulated by
the Java developer. So far, we have looked at
the storage and retrieval of simple one-off data
values by presenting the implementation for a
simple INI file structure. Next, we looked at
storing more complicated data types using
Java’s Object Serialization interfaces and how
easy it was to store our objects for use at a later
date. This month we move the series on to the
next level, which explores storing significant
quantities of data, enough to warrant the use of
an external database. This column will cover
JDBC, the Java interface for databases. We will
look at what it is, how to use it and where to use
it. So without further ado, let us begin.

JDBC…
JDBC, or to give it its full name, Java Data-

base Connectivity, is a set of classes that
allows easy integration between Java classes
and external databases. JDBC presents the
user with a consistent interface to a data-
base, irrespective of the data engine. For
example, JDBC affords the developer the
ability to test and develop using an Access
database, and for their application to ship
which then talks to an Oracle database, all
without having to recompile a single line of
code. It is this power that has made JDBC
one of the most used APIs of the complete
JDK package list, and once a developer has
mastered the few classes that make up the
JDBC package, there is no looking back. So
how does it work?

JDBC can be broken into two distinct
parts: the developers API and the service
providers API. The developers API is what we
are presented with in the JDK, and it is this
one we use to insert and query data into our
tables. The service providers API is the other
side of the equation. It is this API that a ser-
vice provider implements to develop a JDBC
driver which sits in between JDBC and the
actual database. For example, Oracle pro-
vides a free JDBC driver for use with their
database, while Sybase provides one for use
with theirs. When a developer wishes to
change the database engine they are using,
they merely replace the JDBC driver. The
majority of mainstream databases have JDBC
drivers available for them, including the stan-
dard ODBC driver that ships with the JDK.

JDBC uses the standard query language,
or SQL, to facilitate the communication

between the developer and the database,
performing all translations transparently.
For example, Microsoft uses a different fla-
vor of SQL from Oracle. Some queries simply
will not work in Access but will operate per-
fectly in Oracle. Fortunately, Oracle imple-
ments the true SQL interface, but as a devel-
oper you don’t need to worry about these
inconsistencies. Assuming your SQL is stan-
dard, JDBC will perform any conversion that
may be necessary between different data-
base standards.

We will look at the major stages in devel-
oping communications with a database: con-
nection, querying and updating.

Connecting
Before you start using any tables, you

must first make a connection to the driver,
which in turn makes a connection to the
actual database. The best way to illustrate
this procedure is to use an example. The
code below shows the basic stages in setting
this up:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
Connection con = DriverManager.getConnection(
"jdbc:odbc:testdb", "nary", "ceri");

The first call ensures that the class
loader can find the JDBC driver that we
intend to use. In this instance we will use the
standard one that ships with the NT/95 ver-
sion of the JDK, which uses the JDBC-ODBC
bridge for the connection manager. Having
successfully found the correct class, the Dri-
verManager class attempts to retrieve a Con-
nection instance to the specified database.
This can be thought of as a login session to
a given database. It is not uncommon for
several connections, or sessions, to be open
at once. Notice the parameters to the get-

VISUAL CAFÉ

The Data Series:
JDBC

Offering complete database access
by Alan Williamson

Listing 1.
Statement Statmt;
ResultSet Res;

Statmt = Con.createStatement();
Res = Statmt.executeQuery("SELECT FORENAME,SURNAME,AGE FROM
CONTACT WHERE FORENAME LIKE 'A%'");

while (Res.next()){
System.out.println("Forename: " + Res.getString(1));
System.out.println("Surname : " + Res.getString(2));
System.out.println("Age : " + Res.getInt(3));

}

Statmt.close();
Res.close();

Listing 2.
Statement Statmt;
ResultSet Res;

Statmt = Con.createStatement();
Statmt.executeUpdate("INSERT INTO CONTACT(FORENAME,SURNAME,AGE)
VALUES('Alan','Williamson',78)");
Statmt.close();

65VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Connection method; we have a URL to the
database, a user name and password. One of
the advantages of addressing the database
in this manner is that it allows for the data-
base to reside on a remote machine. Having
retrieved the Connection, we can now start
to query and use the database.

Querying data
One of the most common functions a

database performs is that of holding data for
possible future use; the way in which we
retrieve data is through the use of SQL Select
statements. We create the SQL statement
using standard ASCII strings and then pass
them to JDBC, which passes them on to the
database for execution.

SQL presents the results from such
queries as a table which can be read column
by column, row by row. JDBC provides a
class, ResultSet, to make reading this result
table a trivial matter. Listing 1 is an example
of reading all the results when the table is
queried for all names beginning with ‘A’.

The ResultSet is a class that maintains a
cursor into the results table, which can be
advanced using a call to the next() method.
An important thing to remember is that once
a row has been advanced, it can not be revis-
ited. The query would have to be rerun in
order to read the row again. Retrieving indi-
vidual columns can be achieved using a vari-

ety of getXXX(…) type methods from the
ResultSet class. For instance, in our example
we use both the getString(…) and getInt(…)
class to retrieve all the column values. The
columns are retrieved using column indexes,
starting at 1, and occurring in the same
order they are specified in the SQL state-
ment. It is important to use the correct
getXXX(…) method for the column data,
since a some castings will throw an excep-
tion. For example, if you try to use a get-
Long() method to retrieve a column with
text in it, then an exception will most defi-
nitely occur. However, you could use a get-
String(…) method to retrieve a column that
has nothing but integers in it. Just be careful
when choosing your retrieval method.

Storing/Updating/Deleting data
Storing data is as straightforward as

retrieving it. Using the SQL statement
INSERT, we can pass data for inclusion via
JDBC. We can build up the SQL INSERT state-
ment, using standard ASCII strings, as in the
example shown in Listing 2.

Once the statement has been construct-
ed, it is run using the executeUpdate(…)
method. This will return a variety of different
results depending on the SQL being run. In
this example, the method would return the
row number where the insert took place.

Using these same procedures, we can use

the executeUpdate(…) method for both the
other popular SQL statements: UPDATE and
DELETE.

Summary
This article took a whistle stop tour of

the functionality provided by JDBC. The
main reason for this was to introduce JDBC
to you before we look at the final article in
this miniseries, the database layer provided
by Symantec’s Visual Café. This mini-series
explained the whole issue of data storage
and the differing options depending on the
volume of data being handled. As each arti-
cle progressed, the level of complexity also
increased, culminating to complete data-
base access, using JDBC.

In the next column we will look closely at
how Symantec has provided a complete set
of wrapper classes that makes even the sim-
ple interface of JDBC even simpler to use.

About the Author
Alan Williamson is on the Board of Directors at
N-ARY Limited, a UK-based Java software company,
specialising solely in JDBC and Java Servlets. He has
recently completed his second book, focusing purely
on Java Servlets. Alan can be reached at alan@n-
ary.com (http://www.n-ary.com) and he welcomes all
suggestions and comments.

1/2 Ad

alan@n-ary.com

66 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Often it’s very useful to create classes
that represent a restricted number of real-
world entities in our Java programs. For
example, there is only a single instance of the
java.awt.Toolkit class that ever exists in a sin-
gle Java VM. This Toolkit represents the win-
dowing system on the local machine. It
would generally not make sense to have
more than one Toolkit object, so the Toolkit
class is designed to ensure that only one
instance can ever be created. The Toolkit
class is an example of what is termed a Sin-
gleton class.

Java classes have the interesting capability
to represent singleton resources themselves.
That is, you could use a static-only class to
represent a single resource. The best example
that comes to mind in Java’s Core API is the
System class. The System class represents the
O/S information and functionality available to
your Java application: system properties,
loading dynamically loadable libraries, access
to the VM’s garbage collector, etc.

Singletons are a specific example of a
more general concept: the N-ton class. The N-
ton class is a class in which only N objects are
created; N being a finite number. (A singleton
class is an N-ton class where N equals one.)
An example of an N-ton class would be a class
to represent the serial ports available on a
given machine. On a given machine there are
a finite number of serial ports which you can
use to communicate with serial devices, like
modems, Iomage Zip drives, etc. It is easy to
imagine a Java class that represents the seri-
al ports available. You would want to design
this class so that only a finite number of
objects of that type would be created.

In this month’s column I’m going to dis-
cuss the features of N-ton classes verses sta-
tic-only classes and talk about when it is
appropriate to use either approach.

Starting with Static-Only Classes
The primary feature of a static-only class

is that, like the term implies, all of the mem-
bers of the class are declared as “static”.
There are no instance variables or instance

members for the class. Instead, the state of
the resource being represented is stored in
static variables of the static-only class. The
functionality of the resource is exposed
through the static methods of the static-only
class. Using the example of the java.lang.Sys-
tem class, the system’s “state” is represented
using the static variables of the System class.
The variables “in”, “out” and “err”, for exam-
ple, are used to access the standard input,
output and error streams of the current
process, respectively. All three of these vari-
ables are declared as static.

The point of a static-only class is that you
never actually create an object of that type.
Instead you use the static members of the
class very much like you would a singleton
object. It is easy to ensure that an object of a
static-only class is never created. You have
two options available to do this (or you
could use both, although that’s overkill):
1. Declare the class constructor as “private”.

This ensures that no code external to your
class can create any objects of that type;
the compiler simply won’t let you. Howev-
er, this does not restrict code within the
static-only class from creating a new
instance. That’s why I prefer the second
option.

2. Declare the static-only class as “abstract”.
No code, even code within the static-only
class itself, can create an object of an
abstract type. So, adding the “abstract”
attribute to your class guarantees no
instance will ever be created.

Static-only classes are not used in other
popular object-oriented languages mainly for
one reason: How do you initialize static vari-
ables? That is, static variables are, by default,
initialized to zero-states (numbers and chars
are zero, booleans are false and object refer-
ences are null). In languages like C++ there’s
no easy way to initialize the static variables
of a class without writing and calling special
methods to do so.

The Java language provides us with the
“static initializer block” which allows you to

initialize static variables in a class when the
class is loaded into the VM. So, if I was writ-
ing Java’s java.lang.System class, I would add
a static initializer block in the class to set the
“in”, “out” and “err” static variables to non-
null object references. When the System
class is loaded, the static initializer is auto-
matically run, which would guarantee my
static variables would never be null. Listing
1 shows an excerpt of the System class I
would write. The static initializer block is the
block of code preceded solely by the key-
word “static”.

N-ton Classes
N-ton classes, including singleton classes,

are a bit different than the static-only classes.
The idea of an N-ton class is that you do cre-
ate instances of the class, but you want to
guarantee only a finite number are ever
made. So the features of an N-ton class are a
little different than static-only classes. N-ton
classes usually have private constructors
(or, in some cases, package-private or pro-
tected, but for simplicity I’ll stick to “pri-
vate”). You get a reference to one of the N
class instances through one of two different
mechanisms. The first is a static “lookup”
method; a method that takes some sort of
identifier (a String or ID number, for example)
as a parameter and returns an instance for
that identifier. This is the way to do it if you
don’t necessarily know the number of objects
at compile time. For example, the serial port
class I mentioned earlier might have a lookup
method with this signature:

// static Lookup method for a SerialPort
class
public static getPort(int portNumber) {...}

The second mechanism for obtaining a
reference to an N-ton object is through a set
of N static object reference variables of the
class type. This would be the way to do it if
you know the number of objects at compile
time. These N static variables could be ini-
tialized using a static initializer block the
same way a static-only class would use to ini-
tialize its static variables. Listing 2 shows
example code for this kind of N-ton class.

An example in the Java Core API of an N-
ton class is the java.net.InetAddress class.
For this class, N is huge (the number of host

Singletons, N-tons
& Static-only Classes
The whys and hows of making finite-instance classes

TIPS & TECHNIQUES

by Brian Maso

http://www.JavaDevelopersJournal.com VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journal 67

machines on the Internet, which numbers in
the millions), but it is finite. The InetAddress
class has both features I’ve listed for N-ton
classes: a restricted constructor and a public
static “lookup” method.

An N-ton setup is clearly the way to go if
N is greater than one. Which begs the ques-
tion: “Should I use a static-only class or an N-
ton class when N is equal to one (i.e., for a
singleton class)?”. The answer, just as clear-
ly, is: “It depends.” Either technique would
work, in theory. But one attribute makes it
easy to differentiate which technique you
should use for singleton classes. That
attribute I call “replaceability”.

Replaceability is the ability to replace a
singleton’s implementation at runtime. The
java.awt.Toolkit class is a great example of a
singleton with a replaceable implementation.
The Toolkit class itself is an abstract class.
The idea is that different VM implementors
will provide a different (that is, replacement)
implementation for the Toolkit on different
systems. Microsoft provides a Toolkit-
derived class to be used with their VMs on
MS systems, and Sun provides their own

Toolkit-derived class to be used in their VMs.
The Toolkit implementation needs to be
replaced with a particular implementation on
different systems.

In cases where replaceability is required,
it is most appropriate to use the N-ton class
design and less appropriate to use the static-
only design. The Toolkit class itself has both
of the features I listed above for N-ton class-
es: a restricted constructor and a static
lookup method (called Toolkit.getDefault-
Toolkit). In Listing 3 I show my implementa-
tion of the getDefaultToolkit method of the
Toolkit class. This method finds the correct
implementation of Toolkit functionality to
use on the current system by looking for the
system property “java.awt.toolkit” and using
its value as the name of the replaceable
implementation.

The System class, on the other hand, is a
static-only class to represent a singleton
resource. In this case, replaceablity is not a
concern so a static-only implementation is
used. The System class itself has the features
listed above for static-only classes; a private
constructor and the class public interface

includes only static members and methods.
There’s one other major difference

between the static-only design and the N-ton
design. That difference is that N-ton object
instances are finalized, which allows you to
clean up allocated resources. Static-only
classes, on the other hand, generally never
experience finalization and so have no
opportunity for class clean up. In next
month’s column I’ll discuss object and class
finalization, which should help explain this
key difference more clearly. I’ll also show
how to approximate static “uninitializer”
blocks in your Java classes.

About the Author
Brian Maso is a Java programming consultant and
president of Blumenfeld & Maso, Inc. He works out of
Dana Point, CA. He is the author of several Java books.
Before Java, he spent five years corralled in the MS
Windows branch of programming, working for such
notables as the Hearst Corp., First DataBank, and Intel.
Readers are encouraged to contact Brian via e-mail with
any comments or questions at bmaso@developer.com.

Listing 1: My implementation of part of the java.lang.Sys-
tem class.
//Note use of static member variables, a private constructor and a
//static initializer block.
//NOTE: This not how the Java Core API source code implements
//this class. This is to demonstrate using a public static
//interface to make a static-only class.

package java.lang;

import java.io.*;

public class System {
public final static InputStream in = getIn();
public final static PrintStream out = getOut();
public final static PrintStream err = getErr();

static {
// Load native implementation of getXYZ() methods
loadLibrary("System");

}

private static native InputStream getIn();
private static native InputStream getOut();
private static native InputStream getErr();

private System() { }

...
}

Listing 2: Implementation of an N-ton class.
//Features include restricted constructor, finite number of public
//static objects representing the N objects, static initializer
//block initializing the objects.
public class Color {

int red, green, blue;

private Color(int r, int g, int b) {
red = r;
green = g;
blue = b;

}

public static Color Red;
public static Color Green;
public static Color Blue;
public static Color Purple;
public static Color Orange;
...

static {
Red = new Color(255, 0, 0);
Green = new Color(0, 255, 0);
Blue = new Color(0, 0, 255);
...

}
}

Listing 3: Part of the Toolkit class. Uses N-ton pattern to
support replaceablity.
package java.awt;

public abstract class Toolkit {
...

private static Toolkit theToolkit;

static {
try {

String toolkitClassName =
System.getProperty("java.awt.toolkit");

Class clsToolkit = Class.forName(toolkitClassName);
theToolkit = clsToolkit.newInstance();

} catch (Exception e) {
theToolkit = null;

}
}

public static Toolkit getDefaultToolkit() {
if(theToolkit == null)

throw new RuntimeException("No toolkit exists!");

return theToolkit;
}

...

bmaso@developer.com

• VOLUME: 3 ISSUE: 4 http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal68

Visual Café for Java is an
integrated development
environment tool for cre-
ating Java applets and
applications that inter-

face with databases. In
addition, you can create Jav-

aBeans, native EXEs and DLLs. Some of the
improvements include:
• Contextual menus
• ZIP archive and Java Archive support
• Java version compatibility with JDK 1.0.2
• Customizable Project windows
• New and improved wizards
• Incremental debugging

Test Environment
486DX4/100, 24MB RAM, 1.03 Gigabyte

Harddrive, Windows 95, IBM SVGA monitor
and 4X CD-ROM.

System Requirements
Minimum system requirements for use

of this product are:
• Windows (95, NT Workstation version

4.0+ or NT Server version 4.0+)
• Pentium Compatible
• 24Mb of RAM for Win 95 (32 Mb RAM

recommended)
• CD-ROM
• Color Monitor with 256 colors capability
• At least 60 MB of harddisk space

Required harddrive space depends on
which tools you install and whether you
have FAT16 or FAT32.

I strongly recommend installing on a Pen-
tium computer with at least 32Mb of RAM. I
installed on a 486-based PC because that is
what I have. If you only have a 486, I would
suggest you also have at minimum 32 Megs
of RAM; more would certainly be better. The

speed was slow but tolerable. Symantec rec-
ommends a Pentium with a CPU speed of 90
Mhz or higher. Take their advice.

Product Installation
Installation of Visual Café follows your

typical Win 95 software installation
process. The customized installation took
approximately 20 minutes. The only
options I excluded were the sample appli-
cations and the Tour software. A full instal-
lation requires 156 Megabytes (86 meg for
program files), 13 meg for help, 22 meg for
JFC (Java Foundation Class) and 22 meg for
samples files (I’m not sure where the

remaining 13 bytes went).
Figure 1 shows you the software that

you have a choice of installing. At minimum
you need to install Visual Café 2.0 and
dbANYWHERE Server. The remaining pack-
ages are for creating and publishing HTML
(Visual Page), browsing the Internet
(Netscape Communicator), Server software
(FastTrack) and SQL database (Sybase SQL
Anywhere).

This version of Visual Café supports JDK
(Java Development Kit) version 1.1. As you

An Integrated Development Tool for Creating Java
Applets and Applications that Interface with Databases

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

Visual Café for Java
Symantec
10201 Torre Avenue
Cupertino, CA 95014
Phone: 888 822-3409
Fax: 408-253-3968
Web: www.symantec.com
Price: $799.95

Visual Café for Java
Database Development

by Symantec

PRODUCT REVIEW

by Dana Crenshaw

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲

▲
▲

▲
▲

▲

JA
VA

developer’s journalJDJ
World class

 AWARD

Figure 1. Installation Screen

69VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

can see, there is a patch for the Netscape
Communicator in reference to the JDK. It was
not made clear whether or not the JDK must
be already installed. This is not something to
take for granted because I had previously
installed version 1.1.3 to create applets. Just
to be safe, I zapped JDK 1.1.3 from my hard-
drive. Visual Café does come with all of the
necessary Java software, and so I did not run
into any compatibility problems.

About Visual Café 2.0
Visual Café DDE (Database Development

Edition) is the must-have tool for develop-
ing Java applets and/or applications with
database connectivity. It comes with sever-
al wizards and tools that make development
seem almost effortless There is the dbNAVI-
GATOR window which enables you to
access metadata through the dbANY-
WHERE server. In this window you can view
databases in your server and drill down to
look at data in the database tables. Also,
from this window, you can drop database
objects right onto your form. Visual Café
will automatically plug in properties for the
components with information from the
database.

Next, there is the dbAWARE Project wiz-
ard which helps you to set up your project.
Utilizing a series of screens, the wizard helps
you to define your data source, choose
which tables you are going to use and what
columns from those tables you will select
data from. Upon completion, the created
form is displayed in the forms editor.

Figure 2 represents a new project. On
this screen you have four basic areas: the
toolbar, project component list, applet form
and component properties box. I do not
have enough space to justly define their full
capabilities here – you really have to try
this product for yourself – but, neverthe-
less, I will go over them briefly. The compo-
nent list displays a listing of components
(labels, textfields, panels, etc.) being used
in the applet. The applet form is where you

place the components for the applet and
the properties box allows you to set the
properties for each component. This prop-
erties box is a gem.

If you have ever developed Java
applets/application without the use of an
IDE, you know it can be very tedious. You
will love the properties box. By simply click-
ing on dropdown menus or typing in num-
bers, you can easily set properties. For
example, to set the layout manager to Grid-
Layout, you select it from a dropdown and
then set the number of rows and columns in
the proper fields. What about setting the
layout to GridbagLayout? You’ll have no
more nightmares of messing around with
the constraint object. It’s a breeze with Visu-
al Café.

I saved the toolbar for last because it is
so special. I am calling the circled area
‘Component Selector.’ It consists of tabs
that dictate which components you have
available for placing on your form. You
have Standard, Utility, Multimedia,
dbAWARE, Additional, Panels and Shapes.
Each tab yields a different set of compo-
nents, represented by the icons placed
above the tabs. If you are not sure what the
icon represents, you can place your cursor
over the particular icon and help will pop
up, displaying its identity.

Documentation
Accompanying the CD-ROM containing

the software, are three manuals. The first
is a user guide for Visual Page. The remain-
ing two are titled “Getting Started” and
“User’s Guide”. These two are for Visual
Café. “Getting Started” tells you about
installation and how to take the tour. The
tour introduces you to Visual Café. If you
are new to Java development, I recom-
mend taking the tour.

The “User’s Guide” contains a lot of use-
ful information. Of course it covers all of
the functionality of Visual Café. However, it
is not a manual on the Java language and

was not meant to be. To use Visual Café you
do not have to be a Java expert, but you
should have some familiarity with Java.

You can use Visual Café as a learning
tool. If you have some experience with Java
but not a lot, you can study the created
“.Java” file to learn how applets are created.
You will see how to set properties for com-
ponents, how to use Panels and even how
to write code that handles errors. You will
also see how to create Java classes for
applets and applications. Visual Café gives
you the ability to modify the code.

Recommendation
Simply put, if you are serious about

developing Java applets and/or applica-
tions then you must avail yourself to
Symantec’s Visual Café. I have had brief
experiences with Microsoft’ Visual J++ and
Powersoft’s PowerJ, and I rate Visual Café
as the best by far. When it came to creating
applets I had given up on IDEs because they
appear clumsy and stifling. However, that
has changed with Visual Café. If you try it,
you will get hooked just as I am.

Editor’s Note:
Visual Café for Java 2.5 is shipping in late

March. The 2.5 features include:
• JDK 1.1.5
• Universal interface with MDI and SDI sup-

port
• JavaBeans Wizard
• Full dbANYWHERE server with unlimited

connections
• RAD on/off
• Symantec’s JIT (Just In Time) Compiler

3.0.

About the Author
Dana Crenshaw is a freelance writer based in
Atlanta, Georgia. He is a systems analyst with over
13 years of experience. Dana can be reached at
DanaP@CompuServe.com.

Figure 2. Visual Cafe Project Window

DanaP@CompuServe.com

• VOLUME: 3 ISSUE: 4 http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal70

OrbixWeb 3.0 is a CORBA
2.0 compliant, 100% Pure
Java ORB with better life-
cycle management of
distributed objects. It
includes many useful ser-

vices which make it easier
to develop, deploy and manage distributed
applications in the Internet age.

In today’s computing age of Internet
and multi-tier architecture, combining
Java and CORBA offers the best solution.
If you want to do it, then you might want
to look into Iona’s OrbixWeb 3.0 as one of
the leading edge, robust and proven solu-
tions. OrbixWeb is a fully CORBA 2.0 com-
pliant distributed application develop-
ment environment for Java.

Iona and CORBA
In the CORBA world, Iona has many

firsts to its credit – including the first com-
mercially available CORBA compliant ORB
in 1993. With a strong research background
of founders, it has always been a technolo-
gy leader. In OrbixWeb version 3.0, Iona has
removed remaining C++ code from its sup-
port utilities. The basic ORB was already
Pure Java. This version comes with many
new services, improved server object invo-
cation and OMG-compliant Java mapping.

Basics of OrbixWeb Architecture
Orbix ORB is implemented as a pair of

libraries (for client and server) and the
Java based activation daemon orbixdj
(orbixd for C++). The daemon is needed
only on servers’ hosts. It is primarily
responsible for (re)launching server
processes and connects the client/server
for the first time. The daemon maintains a
simple database called Interface Reposito-
ry which maintains the activation modes,
access lists and other information about
the server. In case of “in process” activa-
tion, no separate process is started but

the server runs within the same VM (vir-
tual machine). This improves perfor-
mance. For non-Java servers you will have
to use “out process” activation. Manual
activation would be required for persis-
tent servers and you might use it for your
legacy server. Orbix supports different
thread models – namely, per-client,
thread-pool and per-client-thread.

After establishing the connection, the
requests are passed directly from the
client to the server. The messaging compo-
nent within the libraries manages the
(un)marshalling, protocol and synchro-
nization. Orbix supports its proprietary
and OMG IIOP protocol.

OrbixWeb-Based
Distributed Systems

As a CORBA-based developer you might
need to begin with writing the interfaces,
using OMG’s Interface Definition language,
for your object.

Then you compile the IDLs using Iona’s
supplied IDL-to-language compiler. The IDL
to language compiler (Java, C++, Smalltalk,
Ada) generates (client side proxy) stubs
and (server side) skeletons in that lan-
guage. OrbixWeb 3.0 completely supports
the OMG IDL to Java mapping including the
Java ORB portability interfaces. You don’t
have to recompile stub and skeleton for use
against different vendor’s ORBs. If you use a
previous version of OrbixWeb then I have
bad news for you. The new Java IDL map-
ping is different from OrbixWeb’s previous
version. You must convert to the new inter-
faces. The good news is that you can use
migration utilities.

Develop Dynamic Client and
Servers

In a different scenario, you might not
need to start with writing IDL; that is, using
Dynamic Invocation Interfaces (DII). In this
case, your client might not know the inter-

faces at compile time. In such cases, the
client program browses the Interface
Repository (IFR), gets the methods and
parameters, formulates the request, sends
the request and then polls and processes
the result. You can use trader service
(OrbixTrader) and naming service (Orbix-
Names) for getting the object reference that
is required for IFR. OrbixWeb also supports
Dynamic Skeleton Interface (DSI) which is
for developing a dynamic server.

Develop Web Applications Using
OrbixWeb

OrbixWeb 3.0 supports Internet Inter-
ORB Protocol (IIOP) communication. It
enables the Object invocation and call-
backs to be sent across the Internet. A
client applet along with any browser can
download the stub and related OrbixWeb
classes. OrbixWeb does not depend upon
static embedded browser classes or plug-
ins. Thus, if required, you can change the
ORB configuration information on-the-fly.
The applet then uses Internet ORB Protocol
(IIOP) to communicate with the backend
services on the Web server.

One of the most serious concerns you
might have for Internet applications is secu-
rity. To protect the internal hosts from the
hacker’s attack, you might need to use
Iona’s Wonderwall. Wonderwall is a mecha-
nism for firewall navigation by IIOP
requests. This proxy allows IIOP traffic to
be filtered and routed at the firewall. The
Wonderwall “proxifies” the Interoperable
Object reference (IOR) of an object and

A 100% Pure Java ORB with Better
Lifecycle Management of Distributed Objects

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
OrbixWeb 3.0
Iona Technologies, Inc.
60 Aberdeen Avenue
Cambridge, MA 02138 USA
Phone: 617 949-9000
Web: http://www.iona.com
Email: info@iona.com
Price: $799 Standard Edition, $1,499 Pro Edition
Platforms: More than 20 platforms uncluding
Solaris 2.x, HP-UX, AIX, IRIX etc. Windows95 & NT

OrbixWeb 3.0
by Iona Technologies, Inc.

PRODUCT REVIEW

by Khanderao Kand

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

71VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

AD

72 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

allows remote invocation on the proxy IOR.
Once a proxy for the IOR has been estab-
lished, the client can communicate with the
proxy through a single, known port.

If your client is beyond another corpo-
rate firewall, OrbixWeb tunnels your IIOP
request through HTTP. Basically your
client’s request gets “wrapped up” in HTTP
by the applet’s ORB classes. This is known
as “HTTP tunneling”.

In addition to the wonderwall, you can
use OrbixSSL to gain more security.
OrbixSSL API (available separately) uses
128bit encryption with DEC, RC4 algo-
rithms. You can use OrbixSSL to replace
your default IIOP with the SSL-IIOP protocol.

Iona’s Strong Base of Services
Orbix implements many important

CORBA compliant services. OrbixEvent
implements Event specification. OrbixTalk
is a messaging support system based on IP
multicast. For IBM customers, Orbix offers
Orbix+MQSeries, bringing the power of
IBM’s messaging middleware in a CORBA
environment. OrbixTrader, a CORBA-com-
pliant trader service, is like the yellow
pages. OrbixNames is a naming service,
which binds meaningful names to object
references. For database oriented systems,
Orbix comes with OrbixOTS, which imple-
ments CORBA transaction services. Orbix
has excellent adapters for object databases
like Versant, ObjectStore and other ODBMS.

Customize the ORB with
Application Integrators

OrbixWeb provides a wide range of inte-
gration hooks which give you control and
flexibility over the ORB:
• Loaders – Implement your persistence

mechanism using loaders.
• Filters – Expose the request path before,

and after marshaling. Implement debug-
ging authentication mechanisms.

• ThreadFilters – Use it to configure a serv-

er side thread model to thread-per-
request, thread-pool or thread-per-client.

• Transformers – Used for facilitating data
privacy

• Callbacks – Use client callback interfaces
which a server can invoke without your
client explicitly requesting information

• Locators – Override the mechanism for
determining target object locations using
locators API

• Smart proxies – Override the client stubs.
Typically, you can use it to improve per-
formance by implementing client-side
caching. You can otherwise use smart
proxies for sever rebinding (fail safe),
breakpoints or for non-supported type
conversions (legacy systems).

Installing, Configuring and
Managing OrbixWeb

The installation of OrbixWeb is straight-
forward. I installed it on my NT boxes. The
configuration was easy too. The GUI-based,
user-friendly configuration tool would
make your administration easier. You can
change the properties of ORB and wonder-
wall on-the-fly. OrbixWeb maintains the
properties as properties class.

You can also monitor your server
objects through a GUI-based server manag-
er. Orbix provides different access privi-
leges for clients to invoke, launch or use the
server. You can also register the server as
one of different invocation modes, shared
modes or unshared (per client) or per
method (invocation). The secondary
modes could be multiple client, per client
or per client process. You can maintain
server privileges like owner, launch or
invoke privilege. All of this gives you better
control over server object management.

My Concerns?
• Licensing: Iona charges $100 per run-
time for multi-processor machines. Single-
processor runtimes are free.

• Firewall: The Wonderwall approach was
tightly integrated with the Orbix.
• Debugging: Using APIs we might develop
and integrate debugging support, but it
would have been nice to have seen it built-
in with the product. I hope to see RDBMS
adapters very soon.

Orbix is one of the few to support both
client-side and server-side ActiveX, COM
components. It enables you to develop
Visual Basic, PowerBuilder and ActiveX as
both client and server objects.

What Did I Miss?
1. Performance: You might need to do some

testing of performance reliability before
selecting any ORB. I found OrbixWeb to
be pretty good.

2. Comparing vendors: The comparison of
different ORB vendors can be scaled
based on different factors. Such a com-
parison requires a separate effort.

OrbixWeb: A Flexible, Easy-to-Use
and Robust CORBA Framework

For a long time, Iona has maintained a
technological edge in the CORBA market.
This experience has enriched Iona’s exper-
tise in many industries. Orbix offers better
control over the ORB and server manage-
ment. It also provides more services than
other vendors. Allowing applets as both
client and server objects, Web naming,
Wonderwall and SSL, Orbix is suitable for
Internet. Recently, Iona has licensed COM
from Microsoft. We can definitely expect
the best integration of both the technolo-
gies from Iona in future.

About the Author
Khanderao Kand is presently working as Senior Soft-
ware Engineer at Arbor Software. He can be contact-
ed at kkand@arborsoft.com

Figure 1: Using OrbixWeb for Web Figure 1.2 Configuration Tool and Server Manager

kkand@arborsoft.com

73VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

74 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

When I recently embarked on Java
development for some telecommunica-
tions clients, I quickly learned that pure
Java code is not a PR fad, it is a technical
necessity. A few short months after Sun
announced the 100% Pure Java initiative, I
was grappling with development tools and
third-party code that was itself in transi-
tion. Here are some tips and comments
based upon my real-world experience at
producing and verifying pure Java code.

The rationale for committing to Java in
the first place was very clear. I worked for a
firm that was growing nearly 100 percent
each year as it developed both a profes-
sional services organization (PSO) and a
practice specializing in call centers solu-
tions (CSC). The PSO, among other things,
targeted building Web-enabled client/serv-
er applications that linked databases to the
Internet and corporate intranet.

I was refining the client software for
use by telecommunications firms, as well
as the middleware infrastructure for tying
together legacy applications with distrib-
uted desktops. Telecommunications is a
highly competitive market where cus-
tomer care and customer service are
increasingly important criteria for differ-
entiating one firm from another. I was pro-
viding client software with four founda-
tion modules – subscriber, agent, sales
management and administration – plus
many options for customization and cus-
tom add-ons. Telecom firms typically have
a lot of downstream legacy systems and
databases that have to be integrated into
these client modules, so engineers were
working with Tuxedo transaction moni-
tors, Oracle databases and CORBA-based
messaging.

In such an environment, I had to deliver
a very thin client application that was plat-
form-independent. Users would be distrib-
uted throughout both corporate intranets
and to subscribers on the Internet. There

was simply no way to know whether users
had PCs, Macs, workstations or network
computers. Pure Java code was a technical
necessity.

That said, the 100% Pure Java initiative
was only a few months old. Some tool ven-
dors and many suppliers of third-party
modules were still getting up to speed on
ensuring the code they generated or deliv-
ered was indeed Pure Java. Engineers
worked through code glitches and, in
some cases, assisted third-party partners
in making sure their code was fully com-
pliant.

Benefits
Corporate developers and development

partners should not pigeon-hole the Pure
Java initiative as merely an independent

branding program for software vendors.
Java Pure Check, which is freely available in
conjunction with the initiative, is an essen-
tial tool for in-house testing. And as the cer-
tification program continues to evolve, it is
becoming far easier for internal develop-
ment teams to insist that third-party code
modules they bring into their firm are truly
100% Pure Java code.

Even if there is no intention to verify the
purity of Java code with an independent
testing lab, using Java Pure Check should
be part of any good quality assurance
process. Testing all classes and methods is
simply an excellent requirement, especially
as hectic development schedules stretch
resources and create a temptation to look
for short cuts, or as development teams
expand. My experience confirms that the
Pure Check process provides an excellent
quality assurance building block that is
very consistent with ISO certification
requirements that methods be in place to
guarantee all software is tested before
deployment.

It is also important to recognize that the
inherent capabilities of Java, JavaBeans and
Enterprise JavaBeans make possible a fun-
damentally superior testing methodology
for corporate developers and large integra-
tors. Developers can not only separate
server and client applications more dis-
tinctly than ever before, they can also sep-
arate out business functionality from enter-
prise plumbing issues on the server side.

Testing procedures can, therefore, focus
not so much on testing applications as they
do on testing components. Shifting the
focus to component testing enables a team
to verify functional chunks and should dra-
matically boost productivity.

Clearly separating application compo-
nents also makes it far easier for devel-
opment teams to roll out new functional-
ity. Complex enterprise applications will
include Java and non-Java elements.
Java-based functionality can be added
incrementally over time, as well as
upgraded, over time. Adhering to well-
defined interfaces is crucial to leveraging
that flexibility.

For my clients, there were also strong
business drivers behind the commitment to
Java in general and to the specific commit-

Tips for Developing
Pure Java Applications

An emphasis on delivering pure Java
code offers substantial benefits

CERTIFICATION

by Bob Adams

Tips for Developing
Pure Java Applications

“With the proper

foundation, an

emphasis on

delivering Pure

Java code wherever

possible can

offer substantial

benefits to

the developer.”

75VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

ment to ensuring the code met Pure Java
standards. Java is platform-independent, it
is secure, it is ubiquitous and it solves the
client software distribution problem for
network-centric applications. Ensuring that
Java is always Java – that it is 100% Pure –
is essential to delivering the goods. It is
also these inherent qualities that make pos-
sible thin-clients, including network com-
puters.

Whether on a large intranet or an
extranet where business partners and cus-
tomers access a firm’s computing
resources, companies want to minimize
release management headaches. From the
users’ perspective, whether the application
works properly will shape the perception of
the company’s reliability, so regardless of
the client platform, the software needs to
run well. For telecommunication firms that
means there are some pretty expensive
ramifications to inconveniencing cus-
tomers or business partners that go well
beyond the well-documented impact of
superior customer service on customer loy-
alty.

Pure Java Requirements
Java Pure Check focuses on the purity of

Java code rather than the portability of pro-
gram functions. Purity is a far more objec-
tive measure and Pure Java programs sub-
stantially reduce the risk of portability
problems now and in the future.

Sun defines a Pure Java program as one
that relies only on the documented and
specified Java platform. It is, therefore, a
self-contained set of classes with no exter-
nal dependencies other than the Java Core
API. A Java program may be an application,
an applet, a class library, a servlet, a Jav-
aBeans component or more than one of the
above. For formal certification, if an appli-
cation uses libraries outside the Java Core
API, those libraries need to be packaged
with the application and must be 100% Pure
Java as well.

Purity is measured at the bottom edge of
the program where it interfaces with the
platform, rather than at the top edge where
it interfaces with the user. As such, purity is
a good predictor of portability and a pure
program should not be accidentally
unportable. Programs can be checked for
purity individually, so client and server side
Java programs can be evaluated in a com-
pletely independent manner.

As the above information indicates,
there are some hard and fast rules about
writing Pure Java applications. The first is
that there can be no native methods in the
application.

Introducing native code into a Java pro-
gram sacrifices most of the benefits people
look to Java to deliver -- security, platform

independence, garbage collection and easy
class loading over the network. The securi-
ty implications for users can be very signif-
icant, wiping out assurances that the code
is free of viruses and making it far more
likely that memory problems -- pointer
overrun or attempting to access protected
memory -- can crash the Java Virtual
Machine.

That said, native method definition and
some methods in the java.lang.Runtime
class do provide access to hardware-specif-
ic code, which is useful for Java programs
that access legacy systems. By definition,
however, the interface programs cannot be

Pure Java.
Where it seems necessary to include

native methods to deliver access to a sys-
tem resource that is not properly support-
ed by Java, or to boost performance, there
are a couple of alternatives. One is to define
a simple protocol to give that service and
then write a Pure Java program as a client
of that protocol. Another is to rewrite the
native method in Java.

The Java Native Method Interface (JNI)
does not make native code platform-inde-
pendent, although it does make it easier to
port native code. The native code still must
be recompiled for each different hardware

Bristol
1/2 Ad

76 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

and that recompilation will be difficult or
impossible if the target hardware does not
provide the library or the capabilities
required by the native method.

A second rule is that applications must
depend only on the Java Core APIs and
should not depend upon the internals of
any particular Java implementation. Stan-
dard classes and standard interfaces are
crucial for Java to be Java. The Java Core
APIs provide the basic language,
utility, I/O, network, GUI and
applet services.

There are certain methods in
the Core API that must be called
or implemented in a certain pat-
tern. By failing to follow these
patterns it is possible to write a
program that is syntactically
correct, but which will be highly
nonportable. Sun’s Pure Java
Cookbook provides five or so
examples and Java Pure Check
will catch most of them.

On the flip side of the coin,
any implementation of the Java
Core APIs will include classes
and packages that are not part of
the documented API interface.
Portable programs must not
depend on these implementation
details as they may vary
between different Java imple-
mentations. Sun cautions that
this is true even if the classes in question
are undocumented parts of its reference
Java platform implementation. Those inter-
faces are not part of the Java platform defi-
nition and they are not checked by the tests
for Java compatibility so they may be
absent or may behave in subtly and dan-
gerously different ways on different Java
implementations. They are not document-
ed because they are not intended for client
use.

One subtle way that a program may
depend on implementation details is by
defining classes into the packages that are
part of the Core APIs or a specific imple-
mentation. This breaks protection bound-
aries that the Core implementors are enti-
tled to count on. Another subtle dependen-
cy on implementation details is direct use
of the AWT component peer interfaces
defined in classes in the java.awt.peer pack-
age. These interfaces are documented as
being “for use by AWT implementors”. A
portable program will use the AWT rather
than implement it.

Hardwired, platform-specific constants
are a definite portability problem and a vio-
lation of Pure Java guidelines. Hard-coded
file names should not be used and directo-
ry paths tied to a file name are even worse.
Similarly, input and output streams can be

used unportably with hard-coded and hard-
ware-specific line termination characters.
Java Core APIs do provide portable alterna-
tives that should be used.

The most portable way to construct a
File for a file in a directory is to use the
File(File,String) constructor to build up the
path. Other portable solutions are to use
the system properties to get the local file
separator and starting directory, or to use a

file dialog to ask the user for a filename.
Various hardware platforms may also

have a variety of environmental differences,
such as screen size, available fonts or dif-
ferent color pallets. Developers need to
look for the most portable way to imple-
ment functions that are affected by such
variables. Don’t hard code text sizes, for
instance, and have applications get the font
names from the java.awt.Toolkit.get-
FontList method rather than using a hard-
wired font list.

Applications vs. Applets
Most developers would agree that writ-

ing portable applets is more challenging
than writing portable applications. Applets
extend the java.applet.Applet class. Porta-
bility, however, can be affected by a variety
of other factors, including the Web page the
applet loads from, the other classes the
applet uses, the HTML that loads the apple,
and the security manager and AppletCon-
text of the user’s browser.

For example, the HTML <applet> tag
requires that the applet markup follow cer-
tain rules. <param> elements must come
before the alternate contents. Alternate
contents are text elements, like the con-
tents of a paragraph – the <p> tag. This
means no <p> tags can be included in the

alternate contents.
Applets will almost certainly have to run

under the control of a security manager.
There is, however, no standard profile for
security managers. The user can instruct
their security manager to deny any combi-
nation of access. The best answer is for
developers to make sure that an applet han-
dles any security exception gracefully.

Similarly, the Java standard does not
specify required content types or
protocols. The MIME types
image/jpeg and image/gif should
be safe, as are the http:, file: and
ftp: protocols. Developers should
again ensure that the applet will
handle any errors gracefully.

And finally, the Java 1.0
API specification of the Applet-
Context/Applet protocol was not
very precise. The result of this
ambiguity is that different
browsers call the applet’s enter
and leave methods at different
times. The protocol specification
is much more precise in the Java
1.1 API, so this problem will dis-
appear in time. Until Java 1.1 is
universally deployed, developers
should ensure that an applet that
behaves politely on one browser
does not hog resources on anoth-
er, or that an applet that func-
tions normally on one browser

does not stall on another.

Final Notes
Developers charged with creating Pure

Java applications should certainly read
Sun’s guidelines and its cookbook for creat-
ing portable Java applications. There are
also various online discussions of bugs and
other factors that sometimes make univer-
sally portable Java code more challenging
than developers desire. In addition to Java
Pure Check, I also use the rest of the Java
quality assurance tools developed by Sun’s
SunTest business unit. These include Java-
Star for GUI testing and JavaSpec for API
testing.

Development teams must, in addition to
employing good testing tools, clarify their
expectation for Pure Java coding and make
sure all team members understand what
that means. With the proper foundation, an
emphasis on delivering Pure Java code
wherever possible can offer substantial
benefits to the developer.

About the Author
Bob Adams is Director of Business Development for
Cupertino, California-based SoftPlus.He can be
reached at boba@softplus.com

“Testing all classes and

methods is simply an excellent

requirement, especially as

hectic development schedules

stretch resources and create

a temptation to look for

short cuts, or as development

teams expand.”

boba@softplus.com

77VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

78 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Visionary Solutions
Introduces VisImage®
JAVA Imaging Class
(Philadelphia, PA) - VisImage®
JAVA Imaging Class, written in
100% Pure Java™, is now avail-
able from Visionary Solutions,
Inc. This product offers a full
range of imaging, document
management and document
cleanup features and can be
used with any 4GL Java appli-
cations development tool such
as PowerJ, JBuilder, Symantec
Café and Visual J++.

The VisImage® JAVA Imag-
ing Class is distributed as a
JAR file with a size under 120K.
It is available for purchase for
$795.00. For more information,
call 215 342-7185, Fax 215 728-
1134, e-mail
visolu@voicenet.com or see
their Web site at
www.visolu.com.

WebLogic Announces
Intel Partnership
(San Francisco, CA) - WebLog-
ic, Inc. has announced that
Intel Corporation has made an
investment in WebLogic.

WebLogic also announced
that Intel and WebLogic will
work together to optimize the
performance of WebLogic’s
Tengah Java™ application serv-

er running on the Intel Archi-
tecture, including the future IA-
64TM product family, the first
of which is code-named the
Merced™ processor. The
Merced processor is scheduled
for production in 1999.

Information about WebLog-
ic’s products, services and
strategic technology partners
can be found at their Web site
at www.weblogic.com or by
calling the company at 415 659-
2600.

IBM Licenses Sun’s
picoJava Processor Design
(Fishkill, NY and Palo Alto, CA) -
IBM and Sun Microsystems,
Inc. have announced that IBM
has licensed Sun’s picoJava I
processor core. picoJava I is a
microprocessor chip design
that can be used in consumer
electronic products such as
cellular phones, TV set-top
boxes and other information
appliances, to accelerate
Java™ application perfor-
mance. This will allow manu-
facturers to provide new types
of services on smaller, easier-
to-use devices.

With picoJava, IBM can
build microchips with support
for Java software embedded
directly on the chip. This

approach will help provide
fast, efficient operation of Java
applications on small electron-
ic devices that are less power-
ful and have limited memory
capacity compared to desktop
computing systems.

Information on IBM Micro-
electronics products and ser-
vices can be found at
www.chips.ibm.com.

ObjectSpace Selected by
Sun for New Java™ Con-
sumer Alliance
(Dallas, TX) - ObjectSpace, Inc.,
a leader in providing solutions
to the distributed computing
marketplace, has announced
its charter membership in the
Java Consumer Alliance Pro-
gram hosted by Sun Microsys-
tems, Inc.

Under the alliance, Object-
Space will continue to provide
software development and inte-
gration services to companies
while focusing on three key
areas:
• Embedding the PersonalJava

platform into consumer
devices with compact infor-
mation displays such as Web
phones and hand-held com-
puters

• Leveraging the embedded
Java platform to assist in the
delivery of wireless and
manufacturing devices such
as cellular phones and com-
puter-aided manufacturing
systems

• Continuing its emphasis in
developing highly distributed
systems.
For more information on

ObjectSpace, visit their Web site
at www.objectspace.com.

Stingray Software
Announces Objective
Toolkit/X 1.0
(Morrisville, NC) - Stingray
Software Corp. is shipping
Objective Toolkit/X, the first
docking form for Visual Basic.
Objective Toolkit/X allows the
Visual Basic developer to
enhance their forms so that
they can dock or float any MDI
child. Docking forms let devel-
opers double-click to quickly
change between an MDI child
form and a docked or floating
form.

For more information about
Objective Toolkit/X, see their
Web page at www.stingray.
com/otx/default.asp, call 800
924-4223 or Fax 919 461-9811.

(New York, NY) - Schlumberger
has signed a letter of intent
with Visa International to
become a partner in the Visa
Smart program, which offers
complete smart card solutions
to Visa financial institutions
worldwide.

As part of the program,
Schlumberger will pro-
vide cards, terminals
and application devel-
opment support and
services for added
value programs, such as
loyalty, to Visa Members.
This offering will include
the whole range of Visa Smart
Products and the Open Plat-

form, a secure multi-applica-
tion card based on Java™ Card
technology, as well as the com-
pany’s MagIC™ range of tech-
nology-leading point-of-sale ter-
minals.

The VisaSmart program pro-
vides Visa Members with

access to Schlumberger’s
full range of single applica-
tion and multi-application
smart card products, tech-

nologies and services con-
forming with Visa Chip

applications standards.
For more information

on Schlumberger Electronic
Transactions, see their Web
site at www.slb.com/et.

Schlumberger to Provide Smart Cards,
Terminals to Visa Financial Institutions

Sales Vision Introduces Customer Café™
(Charlotte, NC) - Sales Vision, Inc. has announced the introduc-
tion of Customer Café, an SFA solution based entirely on Java™.
Customer Café contains 20 business objects which represent
each facet of the selling environment; i.e. account management,
team selling, forecasting, etc. Individual objects can be incre-
mentally layered into the application to reflect the customer’s
unique business vision.
This highly adaptive devel-
opment approach allows
customers to rapidly
assemble and deploy cus-
tomized solutions to
accommodate their evolv-
ing business requirements.

Customer Café includes
all Java source code class-
es and can be maintained
in any “Bean-enabled” development environment. All major rela-
tional databases, including Sybase, Oracle, Informix and
Microsoft SQL Server, are supported.

Customer Café is priced at $1,850 per user. For more informa-
tion, visit the Sales Vision Web site at www.salesvision.com, call
Mark Logan at 704 643-1000 or fax 704 643-1090.

79VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Sales
Vision

80 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

JDJ Bundles
Visual J++ Technology
Preview 1
(San Francisco, CA) - SYS-CON
Publications, Inc., recently bun-
dled and distributed Microsoft’s
newly announced Visual J++ 6.0
Technology Preview 1 with
Java Developer’s Journal.

The magazines were avail-
able during the recent confer-
ence. “We will be distributing
15,000 bonus copies of Java
Developer’s Journal at
JavaOne,” said Fuat Kircaali,
publisher of JDJ and president
of SYS-CON Publica-
tions, Inc. “The
special issue of
JDJ, with a
record circulation
of 65,000 copies,
which includes world
exclusive announcements
and giveaways, hit newsstands
on April 7, 1998 and is expect-
ed to sell out.”

“We exclusively chose Java
Developer’s Journal to intro-
duce Visual J++ 6.0 to the Java
community because of its ven-
dor-neutral policy, high circula-
tion and highly respected posi-
tion in the Java media,” said
Farhana Ahmad of Microsoft.
“Microsoft Visual J++ 6.0 Tech-
nology Preview 1 is the easiest
way to harness the productivi-
ty of the Java language and the
power of Windows to build
high-performance, feature-rich
applications and components.”

For more information, press
only, contact Sue Lindsey at
425-637-9097 or e-mail
suel@wagged.com.

JDJ Bundles IBM Product
Demos at JavaOne
(San Francisco, CA) - SYS-CON
Publications, Inc. recently bun-
dled and distributed a sampler
of IBM products with Java
Developer’s Journal.

The magazines were avail-
able during the recent confer-
ence. Included on the disk are a
number of third-party product
demos as well as IBM products.

The IBM products included
are San Francisco, ServletEx-

press Beta 2.0, Visual Age for
Java Entry and WebRunner
Bean Tools. The third-party
products included are Acti-
verse Ding!, Blue Lobster
Stingray and Mako Server,
InstallShield Java Edition Ver-
sion 2, iRenaissance Calendar
Central, Marimba Castanet 2.0
and Orbital Technologies
Organik.

Protoview Development
Builds on JFC with Data
ExplorerJ
(San Francisco, CA) - ProtoView
has released its first JFC prod-

uct, Data ExplorerJ. This
component allows develop-

ers to display and edit
Java™ application

data in the Win-
dows Explorer UI.

Data ExplorerJ is one
of the first products to fully
take advantage of the Java
Foundation Classes (JFDC). It
integrates JFC components –
JTree, JSplitter and JTable.

Data ExplorerJ is shipping
now and retails for $299 ($499
with source code). For more
information, contact ProtoView
at 800 231-8588 (609 655-5000
for international orders) or see
their Web site at www.pro-
toview.com/dataexplorer.

Halcyon Introduces
Instant Basic for Java
(San Jose, CA) - Halcyon Soft-
ware, Inc. has introduced
Instant Basic™ for Java which
allows developers to both
migrate existing Visual basic
applications to the Java plat-
form and to create new Java-
based applications.

Instant Basic™ for Java will
be available in both Standard
and Professional editions. The
Professional edition is bundled
with the Instant Converter and
the Instant Installer™. It also
includes Professional Controls,
ActiveX support (Windows
only), DAO/RDO support with
JDBC and is bundled with an
evaluation version of Cloud-
scape’s JBMS™.

The Standard edition is
priced at $99; the Professional
edition is $795. For additional
information, call 408 998-1998
or visit Halcyon’s Web site at
www.halcyonsoft.com.

Object People Releases
TOPLink™ for Java
(Ottawa, CAN) - The Object
People has released TOPLink
for Java. Since Java is an
object-oriented language and
most databases are relational,
TOPLink solves the problem of

having them work together by
mapping Java objects to rela-
tional databases. Developers
can save 25-40 percent of the
time usually required to get
their applications to work.

TOPLink incorporates fea-
tures such as object-level
transactions and queries,
allowing developers to work
exclusively with objects. No
SQL programming is required.

For more information on
TOPLink for Java, visit their
Web site at www.objectpeo-
ple.com.

KL Group Releases Version
3.0 of JClass Products
(Toronto, ONT) - KL Group,
Inc., a leading provider of GUI
components and Java develop-
ment tools, has upgraded its
entire family of JClass products
to version 3.0. This version fea-
tures compatibility with the
JavaSoft “Swing” component
toolkit in the JDK 1.1 and the
forthcoming JDK 1.2. It offers a
synchronizing release of JClass
BWT, Chart, Field and
LiveTable, ensuring that devel-
opers can easily identify com-
patibility with the latest JDK.

For more information on this
release, see www.klg.com.

Added Value for
E-Commerce, Expanded
Java & Security Features
(Sebastopol, CA) - WebSite Pro-
fessional 2.2 is now available
from O’Reilly. This version
includes Uplink, O’Reilly’s new
utility designed for Internet
Content Providers and Internet
Service Providers. It also has
enhanced log file management
and generation, more options
for Java servlet development
and includes Live Software’s
new JRun 2.1.

Suggested list price for Web-
Site Professional 2.0 is $799;
the upgrade to version 2.2 is
free for downloading at web-
site/oreilly.com by registered
version 2.0 and 2.1 customers.
For more information, call
707829-0515 or e-mail
order@oreilly.com.

(Orlando, FL) - AlphaBlox
Corp. is shipping AlphaBlox
Enlighten, the first complete
system that provides easy-to-
use Operational analysis
applications for line-of-busi-
ness users via the Web.

AlphaBlox Enlighten con-
sists of three parts. Ready-to-
use Java Building Blox can be
assembled into analy-
sis applications with-
out coding.
InterBlox™ is the
Dynamic Appli-
cation Assem-
bly framework
that handles
communica-

tions, cooperation and control
of the Blox. BASE is an exten-
sible server environment that
enables IS centralized mainte-
nance and administration of
AlphaBlox Enlighten applica-
tions. It also comes with two
ready-to-run applications that
are examples of what cus-
tomers can assemble.

Release 1.1 is available
now by calling 888
BLOXNOW. Pricing starts
at $50,000 per server for

up to 50 users. For
more information you
may also see their
Web site at www.alph-

ablox.com.

AlphaBlox Corp. Ships Flagship Product

81VOLUME: 3 ISSUE: 4 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Rogue Wave Software
Announces Java Products
(San Francisco, CA) - Rogue
Wave Software, Inc, announced
three new products at the
JavaOne™ Conference. Grid.J
2.0 is a major update to the
Grid/J product from its
Stingray Software Division. It
features full formula support to
turn a grid into a fully-function-
ing spreadsheet. Blend.J 2.0
integrates Rogue Wave’s JWid-
gets and Stingray’s Blend prod-
uct into a collection of more
than 25 controls for Java devel-
opers. StudioJ is a new suite of
Java components that com-
bines technology from both
company’s for Java component
development.

North American pricing for
Grid.J 2.0 is $395; it ships with
full source code and 30 days of
technical support. Blend.J 2.0
is priced at $295, and also
ships with full source code and
has 30 days of technical sup-
port. For more information call
Rogue Wave at 303 473-9118, e-
mail websales@roguewave.com
or visit their Web site at
www.roguewave.com.

Sun and IBM Team to
Accelerate Adoption
of JavaOS™
(Palo Alto, CA and Somers, NY)
- Sun Microsystems, Inc. and
IBM have announced that they
are collaborating to deliver
JavaOS for Business™ soft-
ware, a new operating system
software product optimized for
network computing on the
Java™ platform. This alliance
will accelerate the adoption of
a more affordable, easier to
manage and simpler model of
computing.

The two companies will
jointly develop and co-market
the JavaOS for Business soft-
ware, which will provide com-
puter and component manufac-
turers, software vendors, chan-
nel integraters and enterprise
customers with an open indus-
try platform optimized to run
Java applications in a centrally
managed environment. It is

designed so client machines
can connect to any platform
and be centrally managed from
a wide variety of server plat-
forms. It should be available to
manufactures in mid-1998.

Additional information on
Sun Microsystems and IBM can
be found on their Web sites,
www.sun.com or www.soft-
ware.ibm.com.

Live Software Will Support
Borland Products
(San Francisco, CA) - Live Soft-
ware has announced ServletDe-
bugger 2.0, an enhanced ver-
sion of its acclaimed servlet
support tool, for Borland Inter-
national Inc.’s JBuilder2, the
new version of Borland’s
award-winning family of visual
development tools for building
corporate and enterprise soft-
ware applications with the
Java™ programming language.

ServletDebugger 2.0 allows
for the testing and debugging
of Java servlet code from with-
in the JBuilder development
environment.

ServletDebugger 2 is avail-
able from Live Software’s Web
site at www.livesoftware.com
and is priced at $195 per devel-
oper seat. Additional informa-
tion about Borland Internation-
al may be found at www.bor-
land.com.

InnoVal Promotes
Java Lobby
(Harrison, NY) - InnoVal sys-
tems Solutions has launched
an advertising campaign to
encourage OS/2 users and
developers to join the Java
Lobby. The Java Lobby is an
advocacy group that repre-
sents the needs and concerns
of Java developers and users

throughout the world.
InnoVal released the beta

version of J Street Mailer at the
end of January. Following the
test period, they intend to mar-
ket J Street Mailer as a full
function e-mail client and a
module that can be integrated
into other Java applications
that require e-mail functions.

For more information about
InnoVal and J Street Mailer, see
their Web page at www.inno-
val.com. More information on
the Java Lobby may be found
at www.javalobby.org.

DashO-Pro Increases Speed
& Decreases Decompilation
(San Francisco, CA) - preEmp-
tive Solutions, Inc. has
announced DashO-Pro. DashO-
Pro increases Java program
speed, makes programs as
small as possible and helps
protect Java programs from
decompilers, all while main-

taining platform independence.
Although it cannot prevent
decompilaton, the technology
makes the resulting recon-
structed source extremely diffi-
cult to understand.

DashO-Pro is available now
at a special introductory price
of $1,495 directly from preEmp-
tive by phone at 216 732-5895
or from their Web site at
www.preemptive.com.

Novera™ Introduces New
Java Application Server
(Burlington, MA) - Novera™
Software, Inc. has announced
the most complete, best man-
aged, Java application server as
the foundation for the compa-
ny’s new jBusiness™ Solutions.

jBusiness Solutions are
about Java-enabling the core
business process to improve
the quality of development,
reduce cycle time and get more
results from limited resources.

Pricing for the Novera appli-
cation and Management
Servers start at $9,995 per
server for Internet capabilities
and at $200 per user for
intranet capabilities. For more
information, call 781 270-4422
or visit their Web site at
www.novera.com.

JDJ Sponsors Java
Pavilion at iEC
(Pearl River, NY) - Java Devel-
oper’s Journal is sponsoring
the Java for iEC Pavilion at the
Internet and Electronic Com-
merce Conference and Exposi-
tion at the Jacob Javits Center
in New York on April 27-29. iEC
is the nation’s largest event
dedicated exclusively to pro-
moting the use of Electronic
Commerce via the Internet.

The Java for iEC pavilion is
a specially designated area
near the front of the iEC exhibit
hall which will spotlight Java
developers demonstrating iEC
applications of their software.

For more information on iEC,
see their Web site at www.iec-
expo.com. For more information
on JDJ, see www.javadevelop-
ersjournal.com.

San Francisco, CA) - Visual
Café for Java Professional
Development Edition and Data-
base Development Edition are
available immediately from
Symantec Corp. Visual Café for
Java is their open standard,
extensible Rapid application
Development
Java soft-
ware devel-
opment tool
for writing,
debugging and
deploying plat-
form-indepen-
dent Java
applets and applications.

Included with Version 2.5 is
a coupon for a complimentary
one-year subscription to Java
Developer’s Journal. Mail in
your copy of the receipt for
purchasing Visual Café 2.5 for
Java and you will receive your

free subscription.
For more informa-

tion on Visual Café
2.5, call 541 334-6054
or see Symantec’s
Web site at
www.symantec.com.
For more informa-
tion on this special

subscription offer, see
cafe.symantec.com/promo/jdj.

Symantec Offers Free JDJ Subscription
with Purchase of Visual Café

PUBLI

SYS-CON
PUBLICATIONS

Money

Enterprise
Java–the
Need for

Tips &
Tech-

Under the
Sun

Java Per-

Product

Reviews
Bazaar
Analyzer

The Grind
JavaSoft

Meets
Its Karma

SPECIALFOCUS:PUSH

SPECIALFOCUS:PUSH

CORBA-

Creating a Push Strategy for Your

Web Site Keith Rowe

Providing customers with content

before they ask for it
8

JDJ Interview: Pushing Out to Your

Clients
Edward Zebrowski

Mark Bowles, Technical Guru of

TIBCO
26

Pushing Open the Warehouse with

the Web Judy Rawls

Bridging the gap between the

worker and the system
20

Push for Corporate Intranets Tony

Davis
Building networked applications

that make a difference
30

Unsigned Applets
Applet ID

Generator

Scanner

Compare

Applet ID

to Database

Unknown

FREE
SUBSCRIPTION
$50 Value

With Purchase of Visual Cafe
for Java Professional

Development Edition 2.5

Mail in a copy of

your receipt with this

completed form to the

address inside for your

FREE subscription to

Java Developer’s Journal

WINDOWS 95/NT

For mail in rebate request forms or

complete terms and conditions, visit our

site at: http://cafe.symantec.com/promo/jdj/

82 • VOLUME: 3 ISSUE: 4Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

I have been hinting that things are not going
well at work. Yeah, the end is near for old Joe. Pro-
jects on hold all of a sudden, my boss in shouting
matches with the president, the guys on the
Board of Directors coming and going a lot. Yep,
something is going on.

Moving to this company was a risk from the
start. But, you’ve got to play the game. The pay
here is very good, the people are OK and the pro-
jects are cool. I can’t really complain. I’ll add the
stock option paper to my recycling bin, as I have
with most small companies where I have worked.
Options are great, but don’t count on them to pay
the rent.

The average length of a job in The Valley is 18
months, so I am right on schedule to be gone.

Like my late mystic friend Nostrajava, I have
developed a sense of the future for any company.
All you need to do to determine the fate of a com-
pany is to make sure you interview the president
before you accept the job. Doesn’t matter if you
are a VP or a humble engineer – try to meet with
the president. In my case, I did, and was troubled
afterwards.

The president of my company is young, got his
MBA from the big university in Palo Alto. Smart
guy, very glib, with the ability to drill down
through the BS quickly. All in all, a star player. So
what was the problem? Old Joe asked him the
killer question.

“Sounds like you have a great background to
lead this company. By the way, what was your
biggest business failure?” I said towards the end
of our brief interview.

He stared at me blankly for a second, but
quickly recovered. “Well, I haven’t had any fail-
ures, that’s why I am here!” he confidently stated.
It helped that his uncle was a very well known
venture capitalist and his father was connected to
New York bankers, but I wasn’t going to burst his
bubble. All I had to do was read Red Herring to
find out all kinds of things about his background.

So what’s wrong with his statement? Everyone
has failures or setbacks. It isn’t what happens to
you, it’s how you react to it. If you have glided
through life and don’t hit your first speed bump
until you are a 36 year old president, then the fall
will be ugly for you and those around you. The
prez is under pressure, and doesn’t understand
how he will react to this kind of pressure. He may
be out soon, but there will be the first quarterly
loss, the stock will drop like a rock and everyone
will forget about you. The loss came, the stock
dropped and now we are slicing and dicing bud-
gets. I will be one of the first to go; I’m over 40 and
expensive. We don’t need wisdom and experience
here. We need results... by next quarter.

Despite his overconfidence, the president is a
good guy. Laying people off is not something that
he wants to do. Now is my chance to show a little

leadership. I knock on his door.
“John, the caca is flying, people know some-

thing is happening. We will need to cut headcount.
By the way, have you ever laid anyone off before?”
I ask.

“Uh, no,” he replied, looking a bit shell-
shocked. ”But I can handle it, don’t worry,” he
fires back in his best sales voice.

“John, you’re a smart guy, but listen to me on
this. I have been on both ends of layoffs. Do them
quickly!. Get your managers together tomorrow.
Draw up a list of people you cannot afford to lose.
Tell them you need them to stay, and double or
triple their stock options. Next, figure out who
else you want to keep and have their managers
talk to them; tell them they have jobs. Next, draw
up the layoff list. Do it by Friday. Have HR work
over the weekend to get the packages together.
Monday afternoon, have the managers lay off the
people; you do the Vice Presidents and Directors.
Do it right after lunch and send everyone home.
Tuesday morning have an all-hands meeting to
talk about what you are going to do to turn the
company around. Don’t dwell on the layoffs. Take
responsibility for the problems, then quickly tell
everyone what the company is going to do to turn
itself around. Throw everyone a bone, like two
extra vacation days or a hundred shares of stock.
Everyone, including the facilities guys. The most
important thing is to move quick and nail down
your best engineers and top salesguys. If they
split, you can’t turn the place around. The head-
hunters are circling this place now. My best coder
got three calls yesterday!”

He stares at me for a second. “Sage advice,
Joe. You know, the biggest problem with being the
president is that you have no friends. People
aren’t predisposed to be honest with you, even
your board members. You are the first honest per-
son I’ve talked to today!”

“Thanks John,” I stop for a second. “You have
the hardest job in the company. And remember,
everyone here wants you to succeed.”

I took a deep breath. “In the spirit of honesty,
you are going to have to take out me and my
entire team; we both know my project is doomed.
I’ll have my guys get their resumés together soon.
Give them a decent layoff package, as they work
hard. A reference letter from the VP of Engineer-
ing would be nice.”

“You got it,” John says in a far away voice.
“Thanks, Joe. By the way, what will you do?”

“Hey, I have my writing gig, and I need to get
that ’57 Chevy in my garage back together. Ever
rebuild a small block Chevy engine? Great thera-
py. Anyway, I can always scrape up a couple of
days a week of contract programming.” I’m really
not worried. The job market is hot and I’ll find
something within a month if I want to.

Such is life in The Valley.

Hit the Road, Joe

by Joe S. Valley

Joe S. Valley is a scarred veteran of the Silicon Valley
wars. It was either writing this column or heading
back into therapy. His company can't afford mental
health care coverage anymore, so writing is the only
option. There are a million stories in the Valley and
Joe knows lots of them. Got a good story? E-mail him
at Joe@sys-con.com

THE GRIND

“The average

length of a job in

The Valley is

18 months, so I am

right on schedule

to be gone.”

Joe@sys-con.com

http://www.JavaDevelopersJournal.com 83Java DEVELOPER’S JournalVOLUME:1 ISSUE: 5 •

Ad

84 Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

KL Group
Full Page Ad

• VOLUME: 3 ISSUE: 4

